Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer

  • Review Article
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

The liver is a lymphoid organ with unique immunological properties, particularly, its predominant innate immune system. The balance between immune tolerance and immune activity is critical to liver physiological functions and is responsible for the sensitivity of this organ to numerous diseases, including hepatotropic virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, autoimmune liver disease, and liver cancer, which are major health problems globally. In the past decade, with the discovery of liver-resident natural killer cells, the importance of innate lymphocytes with tissue residency has gradually become the focus of research. In this review, we address the current knowledge regarding hepatic innate lymphocytes with unique characteristics, including NK cells, ILC1/2/3s, NKT cells, γδ T cells, and MAIT cells, and their potential roles in liver homeostasis maintenance and the progression of liver diseases and cancer. A better understanding of the immunopathogenesis of hepatic innate lymphocytes will be helpful for proposing effective treatments for liver diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mackay, I. R. Hepatoimmunology: a perspective. Immunol. Cell Biol. 80, 36–44 (2002).

    PubMed  Google Scholar 

  2. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–S62 (2006).

    CAS  PubMed  Google Scholar 

  3. Gao, B., Jeong, W. I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology 47, 729–736 (2008).

    CAS  PubMed  Google Scholar 

  4. Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    CAS  PubMed  Google Scholar 

  5. Kubes, P. & Jenne, C. Immune responses in the liver. Annu. Rev. Immunol. 36, 247–277 (2018).

    CAS  PubMed  Google Scholar 

  6. Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    CAS  PubMed  Google Scholar 

  7. Bilzer, M., Roggel, F. & Gerbes, A. L. Role of Kupffer cells in host defense and liver disease. Liver Int. 26, 1175–1186 (2006).

    CAS  PubMed  Google Scholar 

  8. Khomich, O., Ivanov, A. V. & Bartosch, B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells 9, 24 (2019).

    PubMed Central  Google Scholar 

  9. Yankai Wen, J. L., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol. Immunol. (2021).

  10. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Investig. 123, 1444–1456 (2013).

    CAS  PubMed  Google Scholar 

  11. Spits, H. et al. Innate lymphoid cells-a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  12. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS  PubMed  Google Scholar 

  13. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    CAS  PubMed  Google Scholar 

  14. Yu, Y. et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 539, 102–106 (2016).

    CAS  PubMed  Google Scholar 

  15. Ishizuka, I. E. et al. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage. Nat. Immunol. 17, 269–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheppard, S. et al. The murine natural cytotoxic receptor NKp46/NCR1 controls trail protein expression in NK cells and ILC1s. Cell Rep. 22, 3385–3392 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, M. & Zhang, C. The role of innate lymphoid cells in immune-mediated liver diseases. Front Immunol. 8, 695 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X. et al. Memory formation and long-term maintenance of IL-7Ralpha(+) ILC1s via a lymph node-liver axis. Nat. Commun. 9, 4854 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Weizman, O. E. et al. Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12. Nat. Immunol. 20, 1004–1011 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, L. et al. Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J. Autoimmun. 67, 29–35 (2016).

    CAS  PubMed  Google Scholar 

  24. Zhou, J. et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 Axis. Immunity 50, 403–417 e404 (2019).

    CAS  PubMed  Google Scholar 

  25. Krueger, P. D. et al. Murine liver-resident group 1 innate lymphoid cells regulate optimal priming of anti-viral CD8+ T cells. J. Leukoc. Biol. 101, 329–338 (2017).

    CAS  PubMed  Google Scholar 

  26. Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764 (2016).

    CAS  PubMed  Google Scholar 

  27. Bezman, N. A. et al. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13, 1000–1009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 e712 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    CAS  PubMed  Google Scholar 

  30. Cuff, A. O. et al. The obese liver environment mediates conversion of NK cells to a less cytotoxic ILC1-like phenotype. Front. Immunol. 10, 2180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, C. H., Hashimoto-Hill, S. & Kim, M. Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 37, 68–79 (2016).

    CAS  PubMed  Google Scholar 

  32. Wong, S. H. et al. Transcription factor RORalpha is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, L. et al. The transcription factor RelB restrains group 2 innate lymphoid cells and type 2 immune pathology in vivo. Cell Mol. Immunol. https://doi.org/10.1038/s41423-020-0404-0 (2020).

  36. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127(+) Group 1 and Group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    CAS  PubMed  Google Scholar 

  38. Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).

    CAS  PubMed  Google Scholar 

  39. Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    CAS  PubMed  Google Scholar 

  40. Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100 e1010 (2017).

    CAS  PubMed  Google Scholar 

  41. Klugewitz, K., Adams, D. H., Emoto, M., Eulenburg, K. & Hamann, A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol. 25, 590–594 (2004).

    CAS  PubMed  Google Scholar 

  42. Heymann, F. & Tacke, F. Immunology in the liver-from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    CAS  PubMed  Google Scholar 

  43. Marquardt, N. et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 194, 2467–2471 (2015).

    CAS  PubMed  Google Scholar 

  44. Harmon, C. et al. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver. Eur. J. Immunol. 46, 2111–2120 (2016).

    CAS  PubMed  Google Scholar 

  45. Aw Yeang, H. X. et al. Cutting edge: human CD49e- NK cells are tissue resident in the liver. J. Immunol. 198, 1417–1422 (2017).

    CAS  PubMed  Google Scholar 

  46. Lunemann, S. et al. Human liver-derived CXCR6(+) NK cells are predominantly educated through NKG2A and show reduced cytokine production. J. Leukoc. Biol. 105, 1331–1340 (2019).

    CAS  PubMed  Google Scholar 

  47. Freud, A. G. et al. NKp80 defines a critical step during human natural killer cell development. Cell Rep. 16, 379–391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Forkel, M. et al. Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers. Eur. J. Immunol. 47, 1280–1294 (2017).

    CAS  PubMed  Google Scholar 

  49. Gonzalez-Polo, V. et al. Group 2 innate lymphoid cells exhibit progressively higher levels of activation during worsening of liver fibrosis. Ann. Hepatol. 18, 366–372 (2019).

    CAS  PubMed  Google Scholar 

  50. Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. & Rossjohn, J. Unconventional T cell targets for cancer immunotherapy. Immunity 48, 453–473 (2018).

    CAS  PubMed  Google Scholar 

  51. Watarai, H., Nakagawa, R., Omori-Miyake, M., Dashtsoodol, N. & Taniguchi, M. Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat. Protoc. 3, 70–78 (2008).

    CAS  PubMed  Google Scholar 

  52. Dhodapkar, M. V. & Kumar, V. Type II NKT cells and their emerging role in health and disease. J. Immunol. 198, 1015–1021 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gapin, L. Development of invariant natural killer T cells. Curr. Opin. Immunol. 39, 68–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Berzins, S. P., Smyth, M. J. & Baxter, A. G. Presumed guilty: natural killer T cell defects and human disease. Nat. Rev. Immunol. 11, 131–142 (2011).

    CAS  PubMed  Google Scholar 

  56. Rhost, S., Sedimbi, S., Kadri, N. & Cardell, S. L. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand. J. Immunol. 76, 246–255 (2012).

    CAS  PubMed  Google Scholar 

  57. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Exley, M. A. et al. Cutting edge: compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver. J. Immunol. 168, 1519–1523 (2002).

    CAS  PubMed  Google Scholar 

  59. Bonneville, M., O’Brien, R. L. & Born, W. K. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010).

    CAS  PubMed  Google Scholar 

  60. Khairallah, C., Chu, T. H. & Sheridan, B. S. Tissue adaptations of memory and tissue-resident gamma delta T cells. Front. Immunol. 9, 2636 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Li, F. et al. The microbiota maintain homeostasis of liver-resident gammadeltaT-17 cells in a lipid antigen/CD1d-dependent manner. Nat. Commun. 7, 13839 (2017).

    PubMed  Google Scholar 

  62. Wang, X. & Gao, B. GammadeltaT Cells and CD1d, novel immune players in alcoholic and nonalcoholic steatohepatitis? Hepatology 71, 408–410 (2020).

    PubMed  Google Scholar 

  63. Goodall, K. J. et al. Multiple receptors converge on H2-Q10 to regulate NK and gammadeltaT-cell development. Immunol. Cell Biol. 97, 326–339 (2019).

    CAS  PubMed  Google Scholar 

  64. Halary, F. et al. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Davey, M. S. et al. The human Vdelta2(+) T-cell compartment comprises distinct innate-like Vgamma9(+) and adaptive Vgamma9(-) subsets. Nat. Commun. 9, 1760 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Davey, M. S. et al. Clonal selection in the human Vdelta1 T cell repertoire indicates gammadelta TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Hunter, S. et al. Human liver infiltrating gammadelta T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 69, 654–665 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mangan, B. A. et al. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vdelta3 T cells. J. Immunol. 191, 30–34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 7, e54 (2009).

    PubMed  Google Scholar 

  70. Rahimpour, A. et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095–1108 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    CAS  PubMed  Google Scholar 

  72. Huang, S. et al. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc. Natl Acad. Sci. USA 106, 8290–8295 (2009).

    CAS  PubMed  Google Scholar 

  73. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    PubMed  Google Scholar 

  74. Gibbs, A. et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 10, 35–45 (2017).

    CAS  PubMed  Google Scholar 

  75. Patel, O. et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4, 2142 (2013).

    PubMed  Google Scholar 

  76. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 10, e1004210 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Rha, M. S. et al. Human liver CD8(+) MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J. Hepatol. 73, 640–650 (2020).

    CAS  PubMed  Google Scholar 

  78. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  79. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hegde, P. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Tang, X. Z. et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190, 3142–3152 (2013).

    CAS  PubMed  Google Scholar 

  82. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    CAS  PubMed  Google Scholar 

  83. Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Provine, N. M. & Klenerman, P. MAIT cells in health and disease. Annu. Rev. Immunol. 38, 203–228 (2020).

    CAS  PubMed  Google Scholar 

  85. Salou, M. et al. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 216, 133–151 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, F. et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 144, 392–401 (2013).

    CAS  PubMed  Google Scholar 

  87. Lang, P. A. et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc. Natl Acad. Sci. USA 109, 1210–1215 (2012).

    CAS  PubMed  Google Scholar 

  88. Oliviero, B. et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 137, 1151–1160, 1160 e1151-1157 (2009).

    CAS  PubMed  Google Scholar 

  89. Zhang, Z. et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology 53, 73–85 (2011).

    CAS  PubMed  Google Scholar 

  90. Chen, Y. et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology 46, 706–715 (2007).

    CAS  PubMed  Google Scholar 

  91. Chen, Y., Sun, R., Jiang, W., Wei, H. & Tian, Z. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell- and IFN-gamma-dependent manner. J. Hepatol. 47, 183–190 (2007).

    CAS  PubMed  Google Scholar 

  92. Wieduwild, E. et al. Beta2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection. J. Exp. Med. 217, e20190554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, W. et al. CD49a(+)CD49b(+) NK cells induced by viral infection reflect an activated state of conventional NK cells. Sci. China Life Sci. https://doi.org/10.1007/s11427-019-1665-1 (2020).

  94. Ali, A. K., Komal, A. K., Almutairi, S. M. & Lee, S. H. Natural killer cell-derived IL-10 prevents liver damage during sustained murine cytomegalovirus infection. Front. Immunol. 10, 2688 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Picarda, G. et al. Cytomegalovirus evades TRAIL-mediated innate lymphoid cell 1 defenses. J. Virol. 93, e00617–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Min-Oo, G. & Lanier, L. L. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J. Exp. Med. 211, 2669–2680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Peng, H. & Tian, Z. NK cells in liver homeostasis and viral hepatitis. Sci. China Life Sci. 61, 1477–1485 (2018).

    PubMed  Google Scholar 

  98. Chen, Y. & Tian, Z. HBV-induced immune imbalance in the development of HCC. Front. Immunol. 10, 2048 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sun, C. et al. TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog. 8, e1002594 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, H. et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 67, 2035–2044 (2018).

    CAS  PubMed  Google Scholar 

  101. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng, Q. et al. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection. Clin. Exp. Immunol. 180, 499–508 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yuan, L. et al. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation. Gut 68, 2044–2056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wijaya, R. S. et al. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B. J. Hepatol. 71, 252–264 (2019).

    CAS  PubMed  Google Scholar 

  105. Yang, Z., Tang, T., Wei, X., Yang, S. & Tian, Z. Type 1 innate lymphoid cells contribute to the pathogenesis of chronic hepatitis B. Innate Immun. 21, 665–673 (2015).

    CAS  PubMed  Google Scholar 

  106. Hengst, J. et al. Role of soluble inflammatory mediators and different immune cell populations in early control of symptomatic acute hepatitis C virus infection. J. Viral Hepat. 26, 466–475 (2019).

    CAS  PubMed  Google Scholar 

  107. Bonorino, P. et al. Fine characterization of intrahepatic NK cells expressing natural killer receptors in chronic hepatitis B and C. J. Hepatol. 51, 458–467 (2009).

    CAS  PubMed  Google Scholar 

  108. Mele, D. et al. Adaptive natural killer cell functional recovery in hepatitis C virus cured patients. Hepatology. https://doi.org/10.1002/hep.31273 (2020).

  109. Zhu, S., Zhang, H. & Bai, L. NKT cells in liver diseases. Front. Med. 12, 249–261 (2018).

    PubMed  Google Scholar 

  110. Tan, X. et al. Elevated hepatic CD1d levels coincide with invariant NKT cell defects in chronic hepatitis B virus infection. J. Immunol. 200, 3530–3538 (2018).

    CAS  PubMed  Google Scholar 

  111. Wei, X. et al. Hyperactivated peripheral invariant natural killer T cells correlate with the progression of HBV-relative liver cirrhosis. Scand. J. Immunol. 90, e12775 (2019).

    PubMed  Google Scholar 

  112. Khairallah, C. et al. Gammadelta T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog. 11, e1004702 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Kong, X., Sun, R., Chen, Y., Wei, H. & Tian, Z. GammadeltaT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J. Immunol. 193, 1645–1653 (2014).

    CAS  PubMed  Google Scholar 

  114. Yin, W. et al. Functional dichotomy of Vdelta2 gammadelta T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-gamma production. Sci. Rep. 6, 26296 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kefalakes, H. & Rehermann, B. Inflammation drives an altered phenotype of mucosal-associated invariant T cells in chronic hepatitis D virus infection. J. Hepatol. 71, 237–239 (2019).

    CAS  PubMed  Google Scholar 

  116. van Wilgenburg, B. et al. MAIT cells are activated during human viral infections. Nat. Commun. 7, 11653 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Dias, J. et al. Chronic hepatitis delta virus infection leads to functional impairment and severe loss of MAIT cells. J. Hepatol. 71, 301–312 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fung, P. & Pyrsopoulos, N. Emerging concepts in alcoholic hepatitis. World J. Hepatol. 9, 567–585 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Pasala, S., Barr, T. & Messaoudi, I. Impact of alcohol abuse on the adaptive immune system. Alcohol Res. 37, 185–197 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Nagy, L. E. The role of innate immunity in alcoholic liver disease. Alcohol Res. 37, 237–250 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014).

    CAS  PubMed  Google Scholar 

  122. Chen, P., Starkel, P., Turner, J. R., Ho, S. B. & Schnabl, B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 61, 883–894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, F., Little, A. & Zhang, H. Chronic alcohol consumption inhibits peripheral NK cell development and maturation by decreasing the availability of IL-15. J. Leukoc. Biol. 101, 1015–1027 (2017).

    CAS  PubMed  Google Scholar 

  124. Cui, K. et al. Suppression of natural killer cell activity by regulatory NKT10 cells aggravates alcoholic hepatosteatosis. Front. Immunol. 8, 1414 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Sehgal, R. et al. Natural killer cells contribute to pathogenesis of severe alcoholic hepatitis by inducing lysis of endothelial progenitor cells. Alcohol Clin. Exp. Res. 44, 78–86 (2020).

    CAS  PubMed  Google Scholar 

  126. Maricic, I. et al. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology 61, 1357–1369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cui, K. et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1beta in mice. J. Hepatol. 62, 1311–1318 (2015).

    CAS  PubMed  Google Scholar 

  128. Lee, K. C. et al. Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G585–G597 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee, J. H. et al. Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through toll-like receptor 3 in alcoholic liver injury. Hepatology 72, 609–625 (2020).

    CAS  PubMed  Google Scholar 

  130. Riva, A. et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 67, 918–930 (2018).

    CAS  PubMed  Google Scholar 

  131. Marrero, I. et al. Differential activation of unconventional T cells, including iNKT cells, in alcohol-related liver disease. Alcohol Clin. Exp. Res. 44, 1061–1074 (2020).

    CAS  PubMed  Google Scholar 

  132. Li, W. et al. Alcohol abstinence does not fully reverse abnormalities of mucosal-associated invariant T cells in the blood of patients with alcoholic hepatitis. Clin. Transl. Gastroenterol. 10, e00052 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Cotter, T. G. & Rinella, M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 158, 1851–1864 (2020).

  134. Manne, V., Handa, P. & Kowdley, K. V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis. 22, 23–37 (2018).

    PubMed  Google Scholar 

  135. Liu, W., Baker, R. D., Bhatia, T., Zhu, L. & Baker, S. S. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol. Life Sci. 73, 1969–1987 (2016).

    CAS  PubMed  Google Scholar 

  136. Cai, J., Zhang, X. J. & Li, H. The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology 70, 1026–1037 (2019).

    PubMed  Google Scholar 

  137. Tosello-Trampont, A. C. et al. NKp46(+) natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 63, 799–812 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Fan, Y. et al. Hepatic NK cells attenuate fibrosis progression of non-alcoholic steatohepatitis in dependent of CXCL10-mediated recruitment. Liver Int. 40, 598–608 (2020).

    CAS  PubMed  Google Scholar 

  139. Cepero-Donates, Y. et al. Interleukin-15-mediated inflammation promotes non-alcoholic fatty liver disease. Cytokine 82, 102–111 (2016).

    CAS  PubMed  Google Scholar 

  140. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    CAS  PubMed  Google Scholar 

  141. Stiglund, N. et al. Retained NK cell phenotype and functionality in non-alcoholic fatty liver disease. Front. Immunol. 10, 1255 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Miyagi, T. et al. Absence of invariant natural killer T cells deteriorates liver inflammation and fibrosis in mice fed high-fat diet. J. Gastroenterol. 45, 1247–1254 (2010).

    CAS  PubMed  Google Scholar 

  143. Martin-Murphy, B. V. et al. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS One 9, e80949 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Li, Z., Soloski, M. J. & Diehl, A. M. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 42, 880–885 (2005).

    CAS  PubMed  Google Scholar 

  145. Syn, W. K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sutti, S. et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 59, 886–897 (2014).

    CAS  PubMed  Google Scholar 

  147. Syn, W. K. et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61, 1323–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Maricic, I. et al. Differential activation of hepatic invariant NKT cell subsets plays a key role in progression of nonalcoholic steatohepatitis. J. Immunol. 201, 3017–3035 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014).

    CAS  PubMed  Google Scholar 

  150. Adler, M. et al. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis. World J. Gastroenterol. 17, 1725–1731 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Torres-Hernandez, A. et al. Gammadelta T cells promote steatohepatitis by orchestrating innate and adaptive immune programming. Hepatology 71, 477–494 (2020).

    CAS  PubMed  Google Scholar 

  152. Li, Y. et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 9, 1994 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Nabekura, T., Riggan, L., Hildreth, A. D., O’Sullivan, T. E. & Shibuya, A. Type 1 innate lymphoid cells protect mice from acute liver injury via interferon-gamma secretion for upregulating Bcl-xL expression in hepatocytes. Immunity 52, 96–108 e109 (2020).

    CAS  PubMed  Google Scholar 

  154. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Peters, C. P., Mjosberg, J. M., Bernink, J. H. & Spits, H. Innate lymphoid cells in inflammatory bowel diseases. Immunol. Lett. 172, 124–131 (2016).

    CAS  PubMed  Google Scholar 

  156. Tan, Z. et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol. Immunol. 15, 388–398 (2018).

    CAS  PubMed  Google Scholar 

  157. Wang, S. et al. Type 3 innate lymphoid cell: a new player in liver fibrosis progression. Clin. Sci. 132, 2565–2582 (2018).

    CAS  Google Scholar 

  158. Seo, W. et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis. Hepatology 64, 616–631 (2016).

    CAS  PubMed  Google Scholar 

  159. Liaskou, E., Hirschfield, G. M. & Gershwin, M. E. Mechanisms of tissue injury in autoimmune liver diseases. Semin Immunopathol. 36, 553–568 (2014).

    CAS  PubMed  Google Scholar 

  160. Gao, B. & Bertola, A. Natural killer cells take two tolls to destruct bile ducts. Hepatology 53, 1076–1079 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. Shimoda, S. et al. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 53, 1270–1281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Schleinitz, N., Vely, F., Harle, J. R. & Vivier, E. Natural killer cells in human autoimmune diseases. Immunology 131, 451–458 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhao, Z. B. et al. Liver-resident NK cells suppress autoimmune cholangitis and limit the proliferation of CD4(+) T cells. Cell Mol. Immunol. 17, 178–189 (2020).

    CAS  PubMed  Google Scholar 

  164. Littera, R. et al. Exploring the role of killer cell immunoglobulin-like receptors and their HLA class I ligands in autoimmune hepatitis. PLoS One 11, e0146086 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Bo, X., Broome, U., Remberger, M. & Sumitran-Holgersson, S. Tumour necrosis factor alpha impairs function of liver derived T lymphocytes and natural killer cells in patients with primary sclerosing cholangitis. Gut 49, 131–141 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ferri, S. et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52, 999–1007 (2010).

    CAS  PubMed  Google Scholar 

  167. Sebode, M. et al. Inflammatory phenotype of intrahepatic sulfatide-reactive type II NKT cells in humans with autoimmune hepatitis. Front. Immunol. 10, 1065 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chernavsky, A. C. et al. Simultaneous expression of Th1 cytokines and IL-4 confers severe characteristics to type I autoimmune hepatitis in children. Hum. Immunol. 65, 683–691 (2004).

    CAS  PubMed  Google Scholar 

  169. Bottcher, K. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 68, 172–186 (2018).

    PubMed  Google Scholar 

  170. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  171. Dupaul-Chicoine, J. et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43, 751–763 (2015).

    CAS  PubMed  Google Scholar 

  172. Peng, H., Wisse, E. & Tian, Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol. Immunol. 13, 328–336 (2016).

    CAS  PubMed  Google Scholar 

  173. Sun, C., Sun, H., Zhang, C. & Tian, Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol. Immunol. 12, 292–302 (2015).

    CAS  PubMed  Google Scholar 

  174. Sun, C., Sun, H. Y., Xiao, W. H., Zhang, C. & Tian, Z. G. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharm. Sin. 36, 1191–1199 (2015).

    CAS  Google Scholar 

  175. Sun, C. et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology 6, e1264562 (2017).

    PubMed  Google Scholar 

  176. Sun, H. et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70, 168–183 (2019).

    CAS  PubMed  Google Scholar 

  177. Sun, H. et al. Reduced CD160 expression contributes to impaired NK-cell function and poor clinical outcomes in patients with HCC. Cancer Res. 78, 6581–6593 (2018).

    CAS  PubMed  Google Scholar 

  178. Sun, H. et al. Accumulation of tumor-infiltrating CD49a(+) NK cells correlates with poor prognosis for human hepatocellular carcinoma. Cancer Immunol. Res. 7, 1535–1546 (2019).

    CAS  PubMed  Google Scholar 

  179. Easom, N. J. W. et al. IL-15 overcomes hepatocellular carcinoma-induced NK cell dysfunction. Front. Immunol. 9, 1009 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Luo, Q. et al. Tumor-derived soluble MICA obstructs the NKG2D pathway to restrain NK cytotoxicity. Aging Dis. 11, 118–128 (2020).

    PubMed  PubMed Central  Google Scholar 

  181. Mantovani, S. et al. Deficient natural killer cell NKp30-mediated function and altered NCR3 splice variants in hepatocellular carcinoma. Hepatology 69, 1165–1179 (2019).

    CAS  PubMed  Google Scholar 

  182. Zheng, X. et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019).

    CAS  PubMed  Google Scholar 

  183. Harmon, C. et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol. Res. 7, 335–346 (2019).

    CAS  PubMed  Google Scholar 

  184. Lim, C. J. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68, 916–927 (2019).

    CAS  PubMed  Google Scholar 

  185. Chen, Y., Hao, X., Sun, R., Wei, H. & Tian, Z. Natural killer cell-derived interferon-gamma promotes hepatocellular carcinoma through the epithelial cell adhesion molecule-epithelial-to-mesenchymal transition axis in hepatitis B virus transgenic mice. Hepatology 69, 1735–1750 (2019).

    CAS  PubMed  Google Scholar 

  186. Turchinovich, G., Ganter, S., Barenwaldt, A. & Finke, D. NKp46 calibrates tumoricidal potential of type 1 innate lymphocytes by regulating TRAIL expression. J. Immunol. 200, 3762–3768 (2018).

    CAS  PubMed  Google Scholar 

  187. Liu, Y. et al. NCR(-) group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine 41, 333–344 (2019).

    PubMed  PubMed Central  Google Scholar 

  188. Nair, S. & Dhodapkar, M. V. Natural killer T cells in cancer immunotherapy. Front. Immunol. 8, 1178 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Mossanen, J. C. et al. CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4(+) T-cell-dependent control of senescence. Gastroenterology 156, 1877–1889 e1874 (2019).

    PubMed  Google Scholar 

  190. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. Xie, D., Zhu, S. & Bai, L. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci. China Life Sci. 59, 1290–1296 (2016).

    CAS  PubMed  Google Scholar 

  192. Zhao, N. et al. Intratumoral gammadelta T-cell infiltrates, CCL4/5 protein expression and survival in patients with hepatocellular carcinoma. Hepatology. https://doi.org/10.1002/hep.31412 (2020).

  193. Bruni, E. et al. Chemotherapy accelerates immune-senescence and functional impairments of Vdelta2(pos) T cells in elderly patients affected by liver metastatic colorectal cancer. J. Immunother. Cancer 7, 347 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Jiang, H. et al. Gammadelta T cells in hepatocellular carcinoma patients present cytotoxic activity but are reduced in potency due to IL-2 and IL-21 pathways. Int. Immunopharmacol. 70, 167–173 (2019).

    CAS  PubMed  Google Scholar 

  195. Yi, Y. et al. The functional impairment of HCC-infiltrating gammadelta T cells, partially mediated by regulatory T cells in a TGFbeta- and IL-10-dependent manner. J. Hepatol. 58, 977–983 (2013).

    CAS  PubMed  Google Scholar 

  196. Yang, P. et al. TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 22, 291–303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Duan, M. et al. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin. Cancer Res. 25, 3304–3316 (2019).

    PubMed  Google Scholar 

  198. Shaler, C. R. et al. Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol. Immunother. 66, 1563–1575 (2017).

    CAS  PubMed  Google Scholar 

  199. Zhuang, L. et al. Activity of IL-12/15/18 primed natural killer cells against hepatocellular carcinoma. Hepatol. Int. 13, 75–83 (2019).

    PubMed  Google Scholar 

  200. Lee, J. et al. Preventive inhibition of liver tumorigenesis by systemic activation of innate immune functions. Cell Rep. 21, 1870–1882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Molgora, M. et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 551, 110–114 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Luci, C., Vieira, E., Perchet, T., Gual, P. & Golub, R. Natural killer cells and type 1 innate lymphoid cells are new actors in non-alcoholic fatty liver disease. Front. Immunol. 10, 1192 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Yu, M. et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol. Ther. 26, 366–378 (2018).

    CAS  PubMed  Google Scholar 

  204. Alnaggar, M. et al. Allogenic Vgamma9Vdelta2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J. Immunother. Cancer 7, 36 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. Wu, X. & Tian, Z. Gut-liver axis: gut microbiota in shaping hepatic innate immunity. Sci. China Life Sci. 60, 1191–1196 (2017).

    CAS  PubMed  Google Scholar 

  206. Steinmann, S. et al. Hepatic ILC2 activity is regulated by liver inflammation-induced cytokines and effector CD4(+) T cells. Sci. Rep. 10, 1071 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Mao, A. P. et al. Multiple layers of transcriptional regulation by PLZF in NKT-cell development. Proc. Natl Acad. Sci. USA 113, 7602–7607 (2016).

    CAS  PubMed  Google Scholar 

  208. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS  PubMed  Google Scholar 

  209. Bennstein, S. B. Unraveling Natural Killer T-Cells Development. Front. Immunol. 8, 1950 (2017).

    PubMed  Google Scholar 

  210. Singh, A. K., Rhost, S., Lofbom, L. & Cardell, S. L. Defining a novel subset of CD1d-dependent type II natural killer T cells using natural killer cell-associated markers. Scand. J. Immunol. 90, e12794 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    CAS  PubMed  Google Scholar 

  212. Tachibana, M. et al. Runx1/Cbfbeta2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J. Immunol. 186, 1450–1457 (2011).

    CAS  PubMed  Google Scholar 

  213. Withers, D. R. Lymphoid tissue inducer cells. Curr. Biol. 21, R381–R382 (2011).

    CAS  PubMed  Google Scholar 

  214. Paquin-Proulx, D. et al. IL13Ralpha2 expression identifies tissue-resident IL-22-producing PLZF(+) innate T cells in the human liver. Eur. J. Immunol. 48, 1329–1335 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Eidson, M. et al. Altered development of NKT cells, gammadelta T cells, CD8 T cells and NK cells in a PLZF deficient patient. PLoS One 6, e24441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81788101, 91542000, and 81671554), the Ministry of Science & Technology of China (2017ZX10202203-002-001, 2017ZX10202203-009-002), and the National Key R&D Program of China (2019YFA0508503).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. prepared the manuscript, tables, and figures. Z.T. designed and provided guidance on the outline of this review and revised the manuscript.

Corresponding author

Correspondence to Yongyan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tian, Z. Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 18, 57–72 (2021). https://doi.org/10.1038/s41423-020-00561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-020-00561-z

  • Springer Nature Limited

Keywords

This article is cited by