Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Origin and stepwise evolution of vertebrate lungs

  • Article
  • Published:

From Nature Ecology & Evolution

View current issue Submit your manuscript

Abstract

Lungs are essential respiratory organs in terrestrial vertebrates, present in most bony fishes but absent in cartilaginous fishes, making them an ideal model for studying organ evolution. Here we analysed single-cell RNA sequencing data from adult and developing lungs across vertebrate species, revealing significant similarities in cell composition, developmental trajectories and gene expression patterns. Surprisingly, a large proportion of lung-related genes, coexpression patterns and many lung enhancers are present in cartilaginous fishes despite their lack of lungs, suggesting that a substantial genetic foundation for lung development existed in the last common ancestor of jawed vertebrates. In addition, the 1,040 enhancers that emerged since the last common ancestor of bony fishes probably contain lung-specific elements that led to the development of lungs. We further identified alveolar type 1 cells as a mammal-specific alveolar cell type, along with several mammal-specific genes, including ager and sfta2, that are highly expressed in lungs. Functional validation showed that deletion of sfta2 in mice leads to severe respiratory defects, highlighting its critical role in mammalian lung features. Our study provides comprehensive insights into the evolution of vertebrate lungs, demonstrating how both regulatory network modifications and the emergence of new genes have shaped lung development and specialization across species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1: Comparative analysis of vertebrate adult lungs and shared highly expressed genes.
Fig. 2: Distinct lung-specific gene expression and functional divergence between lungs and gills in vertebrate species.
Fig. 3: Comparative analysis of developing lungs in mouse and chicken.
Fig. 4: Expression basis and evolutionary innovation for lung.
Fig. 5: The evolution of lung-enhancers in cartilaginous and bony fishes.
Fig. 6: Evolutionary adaptations of early lungs and the specialization of AT1 cells in mammals.

Similar content being viewed by others

Data availability

All sequencing data and genome assemble have been deposited in the NCBI database (PRJNA1026724).

Code availability

The code is available via GitHub at https://github.com/YeLi0909/vertebrate-lung (ref. 116).

References

  1. Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. Integr. Comp. Biol. 47, 510–523 (2007).

    Article  PubMed  Google Scholar 

  2. Cupello, C. et al. Lung evolution in vertebrates and the water-to-land transition. eLife 11, e77156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sallan, L. C. & Coates, M. I. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc. Natl Acad. Sci. USA 107, 10131–10135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).

    Article  Google Scholar 

  5. Perry, S. F., Wilson, R. J. A., Straus, C., Harris, M. B. & Remmers, J. E. Which came first, the lung or the breath? Comp. Biochem. Physiol. 129, 37–47 (2001).

    Article  CAS  Google Scholar 

  6. Longo, S., Riccio, M. & Mccune, A. Homology of lungs and gas bladders: Insights from arterial vasculature. J Morphol. 274, 687–703 (2013).

    Article  PubMed  Google Scholar 

  7. Cass, A. N., Servetnick, M. & Mccune, A. Expression of a lung developmental cassette in the adult and developing zebrafish swimbladder. Evol. Dev. 15, 119–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, W. et al. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS ONE 6, e24019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daniels, C. B. et al. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders. Physiol. Biochem. Zool. 77, 732–749 (2004).

    Article  PubMed  Google Scholar 

  10. Wang, X. et al. Archaeorhynchus preserving significant soft tissue including probable fossilized lungs. Proc. Natl Acad. Sci. USA 115, 11555–11560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trinajstic, K. et al. Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte. Science 377, 1311–1314 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Janvier, P., Desbiens, S. & Willett, J. A. New evidence for the controversial ‘lungs’ of the Late Devonian antiarch Bothriolepis canadensis (Whiteaves, 1880) (Placodermi: Antiarcha). J. Vertebr. Paleontol. 27, 709–710 (2007).

    Article  Google Scholar 

  13. Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).

    Article  PubMed  Google Scholar 

  14. Hsia, C. C. W., Schmitz, A., Lambertz, M., Perry, S. F. & Maina, J. N. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr. Physiol. 3, 849–915 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lambertz, M., Grommes, K., Kohlsdorf, T. & Perry, S. Lungs of the first amniotes: why simple if they can be complex?. Biol. Lett. 11, 20140848 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rankin, S. A. et al. A molecular atlas of Xenopus respiratory system development. Dev. Dyn. 244, 69–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Zaccone, G., Mauceri, A., Maisano, M. & Fasulo, S. Innervation of lung and heart in the ray-finned fish, bichirs. Acta Histochem. 111, 217–229 (2009).

    Article  PubMed  Google Scholar 

  18. Maina, J. N. The morphology of the lung of the African lungfish, Protopterus aethiopicus: a scanning electron-microscopic study. Cell Tissue Res. 250, 191–196 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Wallau, B. R., Schmitz, A. & Perry, S. F. Lung morphology in rodents (Mammalia, Rodentia) and its implications for systematics. J. Morphol. 246, 228–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Raredon, M. S. B. et al. Single-cell connectomic analysis of adult mammalian lungs. Sci. Adv. 5, eaaw3851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai, M. et al. Dissection of key factors correlating with H5N1 avian influenza virus driven inflammatory lung injury of chicken identified by single-cell analysis. PLoS Pathog. 19, e1011685 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tolomeo, M., Cavalli, A. & Cascio, A. STAT1 and its crucial role in the control of viral infections. Int. J. Mol. Sci. 23, 4095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lelièvre, E. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int. J. Biochem. Cell B 33, 391–407 (2001).

    Article  Google Scholar 

  24. Fahmy, R. G., Dass, C. R., Sun, L.-Q., Chesterman, C. N. & Khachigian, L. M. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat. Med. 9, 1026–1032 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hale, A. T. et al. Endothelial Krüppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J. Biol. Chem. 289, 12016–12028 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng, H., Zhang, Y.-B., Gui, J.-F., Lemon, S. M. & Yamane, D. Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses. PLoS Pathog. 17, e1009220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Persyn, E. et al. IRF2 is required for development and functional maturation of human NK cells. Front. Immunol. 13, 1038821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10, e66747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beers, M. F. & Mulugeta, S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res. 367, 481–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Chroneos, Z. C., Sever-Chroneos, Z. & Shepherd, V. L. Pulmonary surfactant: an immunological perspective. Cell. Physiol. Biochem. 25, 13–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Becker, M.-B., ZuÈlch, A., Bosse, A. & Gruss, P. Irx1 and Irx2 expression in early lung development. Mech. Dev. 106, 155–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. van Tuyl, M. et al. Iroquois genes influence proximo-distal morphogenesis during rat lung development. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L777–L789 (2006).

    Article  PubMed  Google Scholar 

  34. Angenendt, L. et al. The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia. Leukemia 33, 2830–2841 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Negretti, N. M. et al. A single-cell atlas of mouse lung development. Development 148, dev199512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Minoo, P. Transcriptional regulation of lung development: emergence of specificity. Respir. Res. 1, 109–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Attarian, S. J. et al. Mutations in the thyroid transcription factor gene NKX2-1 result in decreased expression of SFTPB and SFTPC. Pediatr. Res. 84, 419–425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikonomou, L. et al. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat. Commun. 11, 635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Belgacemi, R. et al. Hedgehog signaling pathway orchestrates human lung branching morphogenesis. Int. J. Mol. Sci. 23, 5265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Z. et al. Transcription factor Etv5 is essential for the maintenance of alveolar type II cells. Proc. Natl Acad. Sci. USA 114, 3903–3908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitsett, J. A., Kalin, T. V., Xu, Y. & Kalinichenko, V. V. Building and regenerating the lung cell by cell. Physiol. Rev. 99, 513–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Domyan, E. T. et al. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 138, 971–981 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abdelwahab, E. M. M. et al. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir. Res. 20, 204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saito, A., Horie, M. & Nagase, T. TGF-β signaling in lung health and disease. Int. J. Mol. Sci. 19, 2460 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brown, R. et al. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir. Res. 21, 111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anas, A., van der Poll, T. & de Vos, A. F. Role of CD14 in lung inflammation and infection. Crit. Care 14, 209 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Elias-Oliveira, J. et al. CD14 signaling mediates lung immunopathology and mice mortality induced by Achromobacter xylosoxidans. Inflamm. Res. 71, 1535–1546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh, P. P. & Isambert, H. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates. Nucleic Acids Res. 48, D724–D730 (2020).

    CAS  PubMed  Google Scholar 

  51. Arora, R., Metzger, R. J. & Papaioannou, V. E. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet. 8, e1002866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodriguez-Esteban, C. et al. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Steele-Perkins, G. et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol. Cell. Biol. 25, 685–698 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Volpe, M. V. et al. Expression of Hoxb-5 during human lung development and in congenital lung malformations. Birth Defects Res. A 67, 550–556 (2003).

    Article  CAS  Google Scholar 

  57. Gao, K.-Q. & Shubin, N. H. Late Jurassic salamandroid from western Liaoning, China. Proc. Natl Acad. Sci. USA 109, 5767–5772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pyron, R. A. et al. The draft genome sequences of 50 salamander species (Caudata, Amphibia). Biodivers. Genomes 2024, https://doi.org/10.56179/001c.116891 (2024).

  59. Wang, K. et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362–1376 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. LIEM, K. F. Form and function of lungs: the evolution of air breathing mechanisms. Am. Zool. 28, 739–759 (1988).

    Article  Google Scholar 

  61. Maniatis, N. A., Chernaya, O., Shinin, V. & Minshall, R. D. Caveolins and lung function. Adv. Exp. Med. Biol. 729, 157–179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen, N. M. et al. Lung development in laminin gamma2 deficiency: abnormal tracheal hemidesmosomes with normal branching morphogenesis and epithelial differentiation. Respir. Res. 7, 28 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mittal, R. A. et al. SFTA2—a novel secretory peptide highly expressed in the lung—is modulated by lipopolysaccharide but not hyperoxia. PLoS ONE 7, e40011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, B. et al. Single-cell analysis of the amphioxus hepatic caecum and vertebrate liver reveals genetic mechanisms of vertebrate liver evolution. Nat. Ecol. Evol. 8, 1972–1990 (2024).

    Article  PubMed  Google Scholar 

  65. Darwin, C. The Origin of Species (Norton, 1975).

  66. Oakley, T. H. & Speiser, D. I. How complexity originates: the evolution of animal eyes. Annu. Rev. Ecol. Evol. Syst. 46, 237–260 (2015).

    Article  Google Scholar 

  67. Gregory, T. R. The evolution of complex organs. Evol. Educ. Outreach 1, 358–389 (2008).

    Article  Google Scholar 

  68. Bishopric, N. H. Evolution of the heart from bacteria to man. Ann. N. Y. Acad. Sci. 1047, 13–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  PubMed  Google Scholar 

  70. Griffith, O. W. & Wagner, G. P. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat. Ecol. Evol. 1, 0072 (2017).

    Article  Google Scholar 

  71. Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rawn, S. M. & Cross, J. C. The evolution, regulation, and function of placenta-specific genes. Annu. Rev. Cell Dev. Biol. 24, 159–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–225 (2003).

    Article  PubMed  Google Scholar 

  80. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8, 281–291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).

    Article  PubMed  Google Scholar 

  104. Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinform. 8, 77–80 (2010).

    Article  CAS  Google Scholar 

  107. Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Li, H. Protein-to-genome alignment with miniprot. Bioinformatics 39, btad014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Ye, L. YeLi0909/vertebrate-lung: vertebrate-lung v1.1.1. Zenodo https://doi.org/10.5281/zenodo.14546703 (2024).

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (32122021, 32370452, 82200040, 32225009 and 32100367), the National Key R&D Program of China (2022YFC3400300), the New Cornerstone Investigator Program to W.W., the 1000 Talent Project of Shaanxi Province to K.W. and Q.Q., and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

K.W., Q.Q., Y.L. and W.W. designed this project and research aspects. C.F., B.W. and M.H. performed sample collection. T.X., F.Z., Y.L. and J.H. contributed to sequencing library construction for CUT&Tag. M.H. performed the scRNA-seq and bulk RNA-seq data analysis for white-spotted bamboo shark. J.Z. conducted the search for CNE. Y.L. conducted the remaining data analysis. C.Z., W.X., Z.L., L.Z. and P.X. provided valuable suggestions for the study. Y.Z. and Z.Z. contributed to the experimental components of this project. Y.L. and K.W. contributed to figure design. Y.L., K.W., Q.Q. and W.W. wrote the manuscript. K.W. and W.W. amended it.

Corresponding authors

Correspondence to Chenguang Feng, Wen Wang, Yilin Zhao, Qiang Qiu or Kun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Florent Murat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparative analysis of cell types and gene expressions across vertebrate species using single-cell RNA sequencing data.

This figure displays a phylogenetic tree of various species (from Senegal bichir to rat), with corresponding cell counts and UMAP plots showing cell type clustering. Each species’ plot is color-coded to represent different cell types, belonging to immune, stromal, endothelial and epithelial cells. Adjacent to the UMAP plots, a dot plot heatmap illustrates gene expression patterns across cell types, with dot size indicating the percentage of cells expressing each gene and color intensity showing expression levels. The UMAP plots for pig, human, mouse, and rat are provided at the bottom. The light color block highlights the data generated for this study.

Extended Data Fig. 2 Cross-species integration of lung cells from nine vertebrate species.

a, UMAP plots showcasing lung cell distributions from each species, derived from merged SAMAP coordinates. Species range from Senegal bichir to rat, illustrating evolutionary diversity. b, Stacked bar chart quantifying the proportional composition of cell types across species. This visualization highlights interspecies variations in lung cellular makeup. c, Comparative UMAP plots demonstrating the integration efficacy of six different computational methods (CCA, RPCA, MNN, scANVI, scVI, and LIGER) on lung cells from all nine species. The upper row is color-coded by species origin, while the lower row is color-coded by cell types as annotated from each species.

Extended Data Fig. 3 Conservation of cellular communication, transcription factor networks, and gene expression in vertebrate lungs.

a, Co-expression network of 23 conserved lung transcription factors and their partial target genes. This network illustrates the complex regulatory relationships governing lung cell identity and function across species. b, Comparative VEGF signaling networks in Senegal bichir, African lungfish, and mouse lungs, derived from CellChat analysis. Circle sizes indicate cell type proportions, while edge widths represent intercellular communication probabilities. This visualization highlights conserved signaling patterns across evolutionarily distant species. c, Dotplot depicting the expression patterns of lung-specific genes across various mouse tissue cell populations. Rows represent individual genes, columns represent cell types, and color intensity indicates scaled average expression levels.

Extended Data Fig. 4 The shared and diverged gene expression pattern between mouse and chicken.

a, UMAP clustering diagram of mouse lung development. The left plot shows the overall cell type distribution, with major populations such as stromal cells, epithelial cells, endothelial cells, and specialized cell types (AT1, AT2, secretory, and ciliated cells) clearly demarcated. The right series of plots demonstrate the temporal progression of lung cell populations from embryonic day 12 (E12) through postnatal day 14 (P14), showcasing the dynamic changes in cellular composition during development. b, Similar and diverged gene expression patterns in epithelial cells between mouse (top row) and chicken (bottom row) during lung development. The left four genes (nkx2-1, sftpc, lpcatl1, fgfr2) exhibit similar expression patterns across both species, indicating conserved developmental processes. In contrast, the right two genes (etv5, shh) show divergent expression patterns, suggesting species-specific adaptations in lung development. c, Part of genes with mammalian-specific expression patterns during lung development. The dot plot compares expression levels across various species, from chicken to rat, emphasizing genes with higher expression or prevalence in mammalian lungs. d, The dynamic proportions of major cell types during lung development in both chicken (top) and mouse (bottom). Notably, the proportion of stromal cells decreases over time in both species, indicating a conserved developmental trend. e, Heatmap of 32 shared signaling pathways in stromal cells between mouse and chicken. f, The expression of key genes in chicken stromal cells that are known to be highly expressed in mouse lung stromal cells during development. g, Heatmaps displaying genes with progressively increasing expression levels in chicken endothelial cells (left) and mouse endothelial cells (right). h, Bubble plot showing enriched GO terms in endothelial (385 genes). i, Venn diagram showing the number of lung development genes and the lung adult gene set (the upper part is the gene set conserved expressed in the adult lungs, and the lower part is the gene set specifically expressed in the lungs).

Extended Data Fig. 5 Evolution of lung-related genes in cartilaginous fish and analysis of lung-associated enhancers.

a, Phylogenetic tree depicting the evolutionary history of the cd14 (left), ctss and ctsk (rigth) across various species. Numbers at each node represent posterior probabilities (as percentages), indicating the level of support for each branching event. b, Bar plot showing the proportion of lung-related genes originating from 2R-WGD, which is significantly higher than the background proportion. c, Phylogenetic tree depicting the evolutionary history of the sftpb gene across various species. d, Heatmap showing the expression levels of lung-specific genes in various tissues of the bamboo shark (bulk RNA-seq). e, Comparison of evolutionary rates for lung-related genes (left) and other genes (right) between cartilaginous and bony fish. These plots show the distribution of Ka (nonsynonymous substitution rate), Ks (synonymous substitution rate), and Ka/Ks ratio, all calculation based on the ancestral sequence. f, Bar plots comparing the expression levels (in FPKM) of two key lung-specific genes, sftpb and abca3, across different tissues in three species: African lungfish, Senegal bichir, and bamboo shark. The plots reveal a degree of co-expression of these genes in lungfish and bichir, particularly in lung tissues, while showing no apparent correlation in the bamboo shark. g, UMAP plot showing the distribution of cells co-expressing sftpb and abca3 in the esophagus and stomach from white spotted bamboo shark.

Extended Data Fig. 6 Evolution of lung-related regulatory elements.

a-b, Heatmaps showing the distribution of CUT&Tag signals for histone modifications H3K27ac and H3K4me1 around gene transcription start sites (TSS) in embryonic chicken lungs at 9, 11, and 19 days, and at postnatal day 23(a), as well as in 4-week-old mouse lungs (b). c, Stacked plot depicting the relative genomic positions of selected genes and their nearby CNEs in humans, with different rows representing the evolutionary origins of the CNEs. d, Detailed view of 10 CNEs near the TBX4 gene. Top: human lung Hi-C interactions, TAD (Topologically Associating Domain) distribution, and CNE positions (using hg38 as reference). Middle: H3K27ac signals in chicken and mouse embryonic lungs. Bottom: Sequence conservation across multiple species.

Extended Data Fig. 7 Expression of lung-specific genes in swim bladder.

a, Left: UMAP plot showing integrated cell clustering for lungs of African lungfish, Senegal bichir, and swim bladder of zebrafish. Right: Bar chart showing proportion of each cell population (stromal, immune, epithelial, endothelial) in these three species. b, Dot plot displaying expression of lung-specific genes in different cell populations of the zebrafish swim bladder.

Extended Data Fig. 8 Mammalian-specific adaptations in lung structure and function.

a, UMAP plots illustrating the further specialization of mammalian lung endothelial cells, particularly highlighting a distinct population of lung capillary cells not identified in the five non-mammalian species studied. The upper panel shows mammalian lung endothelial cells, while the lower panel represents non-mammalian species. b, Dot plots demonstrating that capillary marker genes are not prominently expressed in lung endothelial cells of non-mammalian species. Triangles indicate endothelial cells in each species. This plot compares gene expression across different cell types and species. c, RNA in situ hybridization images of ca4 (capillary endothelial cell marker) and vwf (vascular endothelial cell marker) in lung sections from mouse, bearded dragon, and African bullfrog. The results indicate that ca4 expression is not detectable in the lungs of these two non-mammalian species, supporting the findings from (b). d, Clustering relationships among AT1, AT2, and respiratory epithelial cells. The left panel shows a phylogenetic tree constructed using expression data, while the right panel represents a similarity matrix. e, UMAP plot of respiratory epithelial cells from nine vertebrate species, generated using SAMAP. Colors represent cell types (left) and species (right). f, Dot plots illustrating the expression patterns of typical AT2 marker genes and AT1-specific genes (found to be upregulated in mammalian AT1 cells compared to non-mammalian respiratory epithelial cells.) in vertebrate lung epithelial cells. Mammals are shown on the top, and non-mammals on the bottom. The scattered expression patterns in non-mammals suggest the specialization of AT1 cells in mammals.

Extended Data Fig. 9 Mammalian-specific genes may drive cell type specialization.

a, Phylogenetic tree illustrating the origin of the sfta2 gene from a duplication of the rhcg gene. b, Phylogenetic tree illustrating the origin of the scgb3a2 gene. c, Enrichment analysis of genes upregulated in the lungs of sfta2 knockout homozygous mice. The plot shows enriched GO terms, ReactomeDB pathways, and WikiPathways, with dot size indicating gene count and color representing significance.

Supplementary information

Reporting Summary

Supplementary Table

The SupplementaryTable.xlsx file contains 11 sheets.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hu, M., Zhang, Z. et al. Origin and stepwise evolution of vertebrate lungs. Nat Ecol Evol 9, 672–691 (2025). https://doi.org/10.1038/s41559-025-02642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02642-6

  • Springer Nature Limited

Profiles

  1. Mingliang Hu