Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Conformational motion correlations in the formation of polypeptide secondary structure in a viscous medium

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Langevin dynamics method and statistical correlation analysis were used to study the α-helical structure folding dynamics of the (Ala)50, (AlaGly)25, and (AlaGly)75 polypeptides depending on the viscosity of the medium. Friction forces that arise when the effective viscosity of the medium is similar to the viscosity of water were found to result in strong correlations between the backbone torsion angles. The polypeptides under study folded mainly to produce α-helical structures. A structure of two contacting α-helices that were approximately equal in length and had a loop between them was observed for a longer chain of 150 residues. A method to visualize the correlation matrix of the dihedral angles of a polypeptide chain was developed for analyzing the effects of the dynamic correlation of conformational degrees of freedom. The analysis of the dynamics of the correlation matrix showed that rotations involving angles of the same type (φ–φ and ψ–ψ) occur predominantly in one direction. Rotations invoving different angles (φ–ψ) occur predominantly in opposite directions, so that the total macromolecule does not rotate. A significant reduction in the effective viscosity of the medium disrupts the correlation and makes the rotations stochastic, thus distorting the formation of the regular (helical) structure. The effects of correlated conformational motions are consequences of viscous friction forces. This conclusion agrees with our previous results that outlined the principle of the minimum rate of energy dissipation and the equipartition of energy dissipation rate between conformational degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Shaitan, Biophysics (Moscow) 60 (5), 692 (2015).

    Article  Google Scholar 

  2. K. V. Shaitan, Biophysics (Moscow) 62 (1), 1 (2017).

    Article  Google Scholar 

  3. C. Levinthal, J. Chem. Phys. 65, 44 (1968).

    Google Scholar 

  4. P. G. Wolynes, Phil. Trans. R. Soc. 363, 453 (2005).

    Article  ADS  Google Scholar 

  5. J. N. Onuchic and P. G. Wolynes, Curr. Opin. Struct. Biol. 14, 70 (2004).

    Article  Google Scholar 

  6. E. R. Henry, R. B. Best, and W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 110, 17880 (2013).

    Article  ADS  Google Scholar 

  7. J. Kubelka, T. K. Chiu, D. R. Davies, et al., J. Mol. Biol. 359, 546 (2006).

    Article  Google Scholar 

  8. E. I. Shakhnovich and A. M. Gutin, Nature (Lond.) 346, 773 (1990).

    Article  ADS  Google Scholar 

  9. E. Shakhnovich, Chem. Rev. 106, 1559 (2006).

    Article  Google Scholar 

  10. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (KDU, Moscow, 2002; Academic Press, New York, 2002).

    Google Scholar 

  11. A. V. Finkelstein and O.V. Galzitskaya, Phys. Life Rev. 1, 23 (2004).

    Article  ADS  Google Scholar 

  12. K. A. Dill and J. L. MacCallum, Science 338, 1042 (2012).

    Article  ADS  Google Scholar 

  13. R. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, Science 334, 517 (2011).

    Article  ADS  Google Scholar 

  14. D. A. Dolgikh, M. P. Kirpichnikov, O. V. Ptitsyn, and V. V. Chemeris, Mol. Biol. (Moscow) 30, 261 (1996).

    Google Scholar 

  15. K. V. Shaitan, G. A. Armeev and A. K. Shaytan, Biophysics (Moscow) 61 (2), 177 (2016).

    Article  Google Scholar 

  16. K. V. Shaitan, M. P. Kirpichnikov, V. S. Lamzin, et al., Vestn. RFBR No. 4 (80), 38 (2013).

    Google Scholar 

  17. S. Pronk, S. Pall, R. Schulz, et al., Bioinformatics 29, 845 (2013).

    Article  Google Scholar 

  18. E. J. Sorin and V. S. Pande, Biophys. J. 88, 2472 (2005).

    Article  ADS  Google Scholar 

  19. D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithms to Applications (Academic Press, New York, 2002).

    MATH  Google Scholar 

  20. C. V. Heer, Statistical Mechanics: Kinetic, Theory and Stochastic Processes (Academic Press, New York, 1972; Mir, Moscow, 1976).

    Google Scholar 

  21. K. V. Shaitan and A. B. Rubin, Mol. Biol. (Moscow) 14, 1323 1980.

    Google Scholar 

  22. K. V. Shaitan and S. S. Saraikin, Biophysics (Moscow) 45 (3), 397 (2000).

    Google Scholar 

  23. K. V. Shaitan, M. A. Lozhnikov and G. M. Kobelkov, Biophysics (Moscow) 61 (4), 531 (2016).

    Article  Google Scholar 

  24. K. V. Shaitan, M. A. Lozhnikov and G. M. Kobelkov, Biophysics (Moscow) 62 (2), 182 (2017).

    Article  Google Scholar 

  25. M. Lutz, Programming Python, 4th ed. (O’Reilly Media, 2010; Simvol-Plyus, St. Petersburg, 2011), Vol.1.

  26. G. Kramer, Matematicheskie metody statistiki (Mir, M.: 1975).

    Google Scholar 

  27. D. J. Hudson, Statistics: Lectures on Elementary Statistics and Probability (CERN, Geneva, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  28. K. V. Shaitan and I. A. Orshanskiy, Biophysics (Moscow) 60, 538 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shaitan.

Additional information

Original Russian Text © K.V. Shaitan, F.Yu. Popelenskii, G.A. Armeev, 2017, published in Biofizika, 2017, Vol. 62, No. 3, pp. 443–451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaitan, K.V., Popelenskii, F.Y. & Armeev, G.A. Conformational motion correlations in the formation of polypeptide secondary structure in a viscous medium. BIOPHYSICS 62, 348–355 (2017). https://doi.org/10.1134/S0006350917030186

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S0006350917030186

Keywords