Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

“Genes of Speciation”: History and Present: A Brief Review

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The review is devoted to the history of the formation of scientific interest in the genetic foundations of isolating barriers between species and the current state of the problem of prezygotic isolation mechanisms. The noncontradictory ideas about natural selection acting on traits and inheritance of traits are based on the synthesis of genetics and the Darwinian theory of evolution that took place in the mid-1920s. An experimental approach to studying genetic foundations of evolution using methods of distant and interspecies hybridization, proposed by Chetverikov, was widely introduced into the world practice by his student Theodosius Dobzhansky. As ideas about the role of geographical and ecological isolation in the isolation of populations and possible forms of selection involved in the formation of barriers, i.e., about allopatric and sympatric speciation, changed, ideas about the importance of pre- and postzygotic isolation mechanisms have also changed. From Dobzhansky–Muller incompatibility models (DMI models) and Wright’s “shifting balance theory,” without disputing their significance, interest has spread to polygenic models of genetic control of traits that determine the effectiveness of mating behavior and copulation. To date, the vast majority of experimental work on the genetic basis of isolating mechanisms between related species has been done using Drosophila. The review discusses classical genetic studies on traits causing incompatibility or “failure” in related Drosophila species, and works using modern methods of genetic engineering, genome editing, and genome and transcriptome analysis to identify target genes involved in the formation of isolation between diverging species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ala-Honkola, O., Kauranen, H., Tyukmaeva, V., Boetzl, F.A., Hoikkala, A., and Schmitt, T., Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana, Insect Sci., 2020, vol. 27, no. 2, pp. 304–316. https://doi.org/10.1111/1744-7917.12639

    Article  CAS  PubMed  Google Scholar 

  2. Andersson, M.B., Sexual Selection, Princeton: Princeton University Press, 1994.

    Book  Google Scholar 

  3. Andrianov, B.V., Gorelova, T.V., Sorokina, S.Yu., and Mitrofanov, V.G., Mitochondrial DNA polymorphism in natural populations of the Drosophila virilis species group, Russ. J. Genet., 2003, vol. 39, no. 6, pp. 630–635.

    Article  CAS  Google Scholar 

  4. Astaurov, B.L., Artificial Parthenogenesis in the Silkworm, Moscow: Publishing House of the USSR Academy of Sciences, 1940.

    Google Scholar 

  5. Belkina, E.G., Seleznev, D.G., Sorokina, S.Yu., Kulikov, A.M., and Lazebny, O.E., The effect of chromosomes on courtship behavior in sibling species of the Drosophila virilis group, Insects, 2023, vol. 14, no. 7, p. 609. https://doi.org/10.3390/insects14070609

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boll, W. and Noll, M., The Drosophila Pox neuro gene: control of male courtship behavior and fertility as revealed by a complete dissection of all enhancers, Development, 2002, vol. 129, no. 24, pp. 5667–5681. https://doi.org/10.1242/dev.00157

    Article  CAS  PubMed  Google Scholar 

  7. Brennan, P.L.R. and Orbach, D.N., Copulatory behavior and its relationship to genital morphology, Advances in the Study of Behavior, Elsevier, 2020, Ch. 3, pp. 65–122. https://doi.org/10.1016/bs.asb.2020.01.001

  8. Brennan, P.L.R. and Prum, R.O., Mechanisms and evidence of genital coevolution: the roles of natural selection, mate choice, and sexual conflict, Cold Spring Harbor Perspect. Biol., 2015, vol. 7, no. 7, p. a017749. https://doi.org/10.1101/cshperspect.a017749

    Article  Google Scholar 

  9. Chatterjee, S.S., Uppendahl, L.D., Chowdhury, M.A., Ip, P.-L., and Siegal, M.L., The female-specific Doublesex isoform regulates pleiotropic transcription factors to pattern genital development in Drosophila, Development, 2011, vol. 138, no. 6, pp. 1099–1109. https://doi.org/10.1242/dev.055731

    Article  CAS  PubMed  Google Scholar 

  10. Chetverikov, S.S., On some aspects of the evolutionary process from the point of view of modern genetics, J. Exp. Biol., 1926, vol. 2, no. 1, pp. 3–45, no. 4, 237–240.

  11. Coyne, J.A., Genetic basis of differences in genital morphology among three sibling species of Drosophila, Evolution, 1983, vol. 37, no. 6, pp. 1101–1118. https://doi.org/10.1111/j.1558-5646.1983.tb00225.x

    Article  PubMed  Google Scholar 

  12. Coyne, J.A. and Orr, H.A., The evolutionary genetics of speciation, Philos. Trans. R. Soc. London, B, 1998, vol. 353, no. 1366, pp. 287–305. https://doi.org/10.1098/rstb.1998.0210

    Article  CAS  Google Scholar 

  13. Dobzhansky, T., Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids, Genetics, 1936, vol. 21, no. 2, pp. 113–135. https://doi.org/10.1093/genetics/21.2.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dobzhansky, T., Genetic nature of species differences, Am. Nat., 1937a, vol. 71, no. 735, pp. 404–420.

    Article  Google Scholar 

  15. Dobzhansky, T., Genetics and the Origin of Species, New York: Columbia University Press, 1937b.

    Google Scholar 

  16. Dobzhansky, T., Rapid vs. flexible chromosomal polymorphism in Drosophila, Am. Nat., 1960, vol. 96, no. 891, pp. 321–328.

    Article  Google Scholar 

  17. Dobzhansky, T.G., Genetics of the Evolutionary Process, New York: Columbia University Press, 1971.

    Google Scholar 

  18. Dufour, L., Anatomie générale des Dipteres, Annuare de Science Naturelle, 1848, no. 1, pp. 244–264.

  19. Eberhard, W.G., Animal genitalia and female choice, Am. Sci., 1990, vol. 78, pp. 134–141.

    Google Scholar 

  20. Eberhard, W.G., Sexual Selection and Animal Genitalia, Cambridge, Massachusetts, USA: Harvard University Press, 1985.

    Book  Google Scholar 

  21. Evgen’ev, M.B., Genetic regulation of mitosis in interspecific hybrids of Drosophila. I. Maternal effect on chromosome segregation and elimination, Genetika, 1973, vol. 9, pp. 92–99.

    Google Scholar 

  22. Evgeniev, M.B. and Gubenko, I.S., Genetic regulation of the replication pattern of polytene chromosomes in interspecific hybrids of Drosophila, Chromosoma, 1977, vol. 63, no. 1, pp. 89–100. https://doi.org/10.1007/bf00292944

    Article  Google Scholar 

  23. Evgen’ev, M.B. and Sidorova, N.V., Genetic regulation of chromosome behaviour in interspecific hybrids of Drosophila, Theor. Appl. Genet., 1976, vol. 48, no. 2, pp. 55–61. https://doi.org/10.1007/bf00267312

    Article  PubMed  Google Scholar 

  24. Evgen’ev, M.B., Lakovaara, S., Poluektova, E.V., Saura, A., and Sokolov, N.N., What is Drosophila littoralis Meigen? (Diptera: Drosophilidae), Ent. Scand., 1981, no. 15, pp. 337–340.

  25. Falileeva, L.I. and Mitrofanov, V.G., An electron microscopic study of the structure of the spermatozoa from sterile males from a crossing of Drosophila virilis × Drosophila lummei, Ontogenez, 1997a, vol. 28, pp. 223–231.

    CAS  PubMed  Google Scholar 

  26. Falileeva, L.I. and Mitrofanov, V.G., Genomic incompatibility in Drosophila virilis Sturt. × Drosophila lummei Hackman hybrids, Genetika, 1997b, vol. 33, no. 4, pp. 458–463.

    CAS  PubMed  Google Scholar 

  27. Fisher, R.A., The Genetical Theory of Natural Selection, UK: The Clarendon Press, 1930.

    Book  Google Scholar 

  28. Frazee, S.R. and Masly, J.P., Multiple sexual selection pressures drive the rapid evolution of complex morphology in a male secondary genital structure, Ecol. Evol., 2015, vol. 5, no. 19, pp. 4437–4450. https://doi.org/10.1002/ece3.1721

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frazee, S.R., Harper, A.R., Afkhami, M., Wood, M.L., McCrory, J.C., and Masly, J.P., Interspecific introgression reveals a role of male genital morphology during the evolution of reproductive isolation in Drosophila, Evolution, 2021, vol. 75, no. 5, pp. 989–1002. https://doi.org/10.1111/evo.14169

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ford, E.B., Mendelism and Evolution, Methuen, 1949.

    Google Scholar 

  31. Glassford, W.J., Johnson, W.C., Dall, N.R., Smith, S.J., Liu, Ya., Boll, W., Noll, M., and Rebeiz, M., Co-option of an ancestral hox-regulated network underlies a recently evolved morphological novelty, Dev. Cell, 2015, vol. 34, no. 5, pp. 520–531. https://doi.org/10.1016/j.devcel.2015.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gornostaev, N.G., Kulikov, A.M., and Mitrofanov, V.G., Morphological diagnosis of males of the species group Drosophila virilis s.l. (Diptera, Drosophilidae), Entomological Review (Rus.), 1998, vol. 77, no. 3, pp. 700–703.

    Google Scholar 

  33. Hackett, J.L., Wang, X., Smith, B.R., and MacDonald, S.J., Mapping QTL contributing to variation in posterior lobe morphology between strains of Drosophila melanogaster, PLoS One, 2016, vol. 11, no. 9, p. e0162573. https://doi.org/10.1371/journal.pone.0162573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hagen, J.F.D., Mendes, C.C., Blogg, A., Payne, A., Tanaka, K.M., Gaspar, P., Figueras Jimenez, J., and Kittelmann, M., McGregor, A.P., and and Nunes, M.D.S., tartan underlies the evolution of Drosophila male genital morphology, Proc. Natl. Acad. Sci., 2019, vol. 116, pp. 19025–19030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hagen, J.F.D., Mendes, C.C., Booth, Sh.R., Figueras Jimenez, J., Tanaka, K.M., Franke, F.A., Baudouin-Gonzalez, L., Ridgway, A.M., Arif, S., Nunes, M.D.S., and McGregor, A.P., Unraveling the genetic basis for the rapid diversification of male genitalia between Drosophila species, Mol. Biol. Evol., 2021, vol. 38, no. 2, pp. 437–448. https://doi.org/10.1093/molbev/msaa232

    Article  CAS  PubMed  Google Scholar 

  36. Haldane, J.B.S., A mathematical theory of natural and artificial selection, part V: selection and mutation, Proc. Camb. Philos. Soc., 1927, no. 28, pp. 838–844.

  37. Haldane, J.B.S., The Causes of Evolution, London: Longmans, Green, 1932.

    Google Scholar 

  38. Henderson, C.R., Estimation of changes in herd environment, J. Dairy Sci., 1949, no. 32, pp. 706–711.

  39. Hosken, D.J. and Stockley, P., Sexual selection and genital evolution, Trends Ecol. Evol., 2004, vol. 19, no. 2, pp. 87–93. https://doi.org/10.1016/j.tree.2003.11.012

    Article  PubMed  Google Scholar 

  40. House, C.M., Lewis, Z., Hodgson, D.J., Wedell, N., Sharma, M.D., Hunt, J., and Hosken, D.J., Sexual and natural selection both influence male genital evolution, PLoS One, 2013, vol. 8, no. 5, p. e63807. https://doi.org/10.1371/journal.pone.0063807

    Article  PubMed  PubMed Central  Google Scholar 

  41. House, C.M., Lewis, Z., Sharma, M.D., Hodgson, D.J., Hunt, J., Wedell, N., and Hosken, D.J., Sexual selection on the genital lobes of male Drosophila simulans, Evolution, 2021, vol. 75, no. 2, pp. 501–514. https://doi.org/10.1111/evo.14158

    Article  PubMed  Google Scholar 

  42. Hunt, J., Wolf, J.B., and Moore, A.J., The biology of multivariate evolution, J. Evol. Biol., 2007, vol. 20, no. 1, pp. 24–27. https://doi.org/10.1111/j.1420-9101.2006.01222.x

    Article  CAS  PubMed  Google Scholar 

  43. Hunt, J., Breuker, C.J., Sadowski, J.A., and Moore, A.J., Male-male competition, female mate choice and their interaction: determining total sexual selection, J. Evol. Biol., 2008, vol. 20, pp. 24–27.

    Article  Google Scholar 

  44. Huxley, J.S., Darwin’s theory of natural selection and the data subsumed by it, in the light of recent research, Am. Nat., 1938, vol. 72, pp. 416–433.

    Article  Google Scholar 

  45. Huxley, J.S., Evolution. The Modern Synthesis, London: George Allen, Unwin Ltd., 1942.

    Google Scholar 

  46. Krstic, D., Boll, W., and Noll, M., Sensory integration regulating male courtship behavior in Drosophila, PLoS One, 2009, vol. 4, no. 2, p. e4457. https://doi.org/10.1371/journal.pone.0004457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kulikov, A.M., Melnikov, A.I., Gornostaev, N.G., and Mitrofanov, V.G., Divergence of Drosophila virilis group species of the according to the phallus shape, Dokl. Acad. Nauk, 2001, vol. 376, no. 6, pp. 841–884.

    CAS  Google Scholar 

  48. Kulikov, A.M., Melnikov, A.I., Gornostaev, N.G., Lazebny, O.E., and Mitrofanov, V.G., Morphological analysis of male mating organ in the Drosophila virilis species group: a multivariate approach, J. Zool. Syst. Evol. Res., 2004, vol. 42, no. 2, pp. 135–144. https://doi.org/10.1111/j.1439-0469.2004.00246.x

    Article  Google Scholar 

  49. Kulikov, A.M., Gornostaev, N.G., and Lazebnyĭ, O.E., Interspecies variability of number of bristles on dorsal surface of aedeagus in D. virilis species group and its genetic mapping with interspecies hybrids of D. virilis and D. lummei, Russ. J. Genet., 2013a, vol. 49, no. 2, pp. 158–163. https://doi.org/10.1134/S1022795413020075

    Article  CAS  Google Scholar 

  50. Kulikov, A.M., Mel’nikov, A.I., Gornostaev, N.G., and Lazebny, O.E., Dominance status of shape of male genitalia in interspecific crosses of some Drosophila virilis group species, Russ. J. Genet., 2013b, vol. 49, no. 6, pp. 588–601. https://doi.org/10.1134/S1022795413060069

    Article  CAS  Google Scholar 

  51. Kulikov, A.M., Sorokina, S.Yu., Melnikov, A.I., Gornostaev, N.G., Seleznev, D.G., and Lazebny, O.E., The effects of the sex chromosomes on the inheritance of species-specific traits of the copulatory organ shape in Drosophila virilis and Drosophila lummei, PLoS One, 2020, vol. 15, no. 12, p. e0244339. https://doi.org/10.1371/journal.pone.0244339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lande, R. and Arnold, S.J., The measurement of selection on correlated characters, Evolution, 1983, vol. 37, no. 6, pp. 1210–1226. https://doi.org/10.2307/2408842

    Article  PubMed  Google Scholar 

  53. Laurie, C.C., True, J.R., Liu, J., and Mercer, J.M., An introgression analysis of quantitative trait loci that contribute to a morphological difference between Drosophila simulans and D. mauritiana, Genetics, 1997, vol. 145, no. 2, pp. 339–348. https://doi.org/10.1093/genetics/145.2.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. LeVasseur-Viens, H., Polak, M., and Moehring, A.J., No evidence for external genital morphology affecting cryptic female choice and reproductive isolation in Drosophila, Evolution, 2015, vol. 69, no. 7, pp. 1797–1807. https://doi.org/10.1111/evo.12685

    Article  PubMed  Google Scholar 

  55. Liu, J., Mercer, J.M., Stam, L.F., Gibson, G.C., Zeng, Z.-B., and Laurie, C.C., Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana, Genetics, 1996, vol. 142, no. 4, pp. 1129–1145. https://doi.org/10.1093/genetics/142.4.1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, J., Stam, L.F., Mercer, J.M., Gibson, G.C., and Laurie, C.C., Morphological differences in the male genitalia of D. simulans and D. mauritiana, Abs. Dros. Res. Conf., 1995, p. 305a.

  57. Lush, J.L., Animal Breeding Plans, Ames: Collegiate Press, 1943.

    Google Scholar 

  58. Masly, J.P., Dalton, J.E., Srivastava, S., Chen, L., and Arbeitman, M.N., The genetic basis of rapidly evolving male genital morphology in Drosophila, Genetics, 2011, vol. 189, no. 1, pp. 357–374. https://doi.org/10.1534/genetics.111.130815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mayr, E., Ecological factors in speciation, Evolution, 1947, vol. 1, no. 4, pp. 263–288. https://doi.org/10.2307/2405327

    Article  Google Scholar 

  60. Mayr, B.F., Animal Species and Evolution, Cambridge, Mass: Harvard University Press, 1966.

    Google Scholar 

  61. Minocha, Sh., Boll, W., and Noll, M., Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain, PLoS One, 2017, vol. 12, no. 4, p. e0176002. https://doi.org/10.1371/journal.pone.0176002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitrofanov, V.G. and Sidorova, N.V., Role of the female genotype in the formation of structural anomalies in the organs of Drosophila virilis female times D. litoralis male hybrids, Sov. J. Dev. Biol., 1975, no. 5, pp. 82–83.

  63. Mitrofanov, V.G. and Sidorova, N.V., Genetics of the sex ratio anomaly in Drosophila hybrids of the Virilis group, Theor. Appl. Genet., 1981, vol. 59, no. 1, pp. 17–22. https://doi.org/10.1007/bf00275769

    Article  CAS  PubMed  Google Scholar 

  64. Mitrofanov, V.G., Sidorova, N.V., Grigor’eva, G.A., and Falileeva, L.I., Genetic control of isolating mechanisms in the genus Drosophila, Genetika, 1998, vol. 34, no. 9, pp. 189–199.

    Google Scholar 

  65. Mitrofanov, V.G., Sorokina, S.Iu., and Andrianov, B.V., Variation of the mitochondrial genome in the evolution of Drosophila, Russ. J. Genet., 2002, vol. 38, no. 8, pp. 895–907.

    Article  CAS  Google Scholar 

  66. Muller, H.J., Bearing of the Drosophila work on systematics, The New Systematics, Huxley, J.S., Ed., Oxford: Clarendon Press, 1940, pp. 185–268.

    Google Scholar 

  67. Muller, H.J., Isolating mechanisms, evolution, and temperature, Biol. Symp., 1942, no. 6, pp. 71–125.

  68. Parker, D.J., Wiberg, R.A.W., Trivedi, U., Tyukmaeva, V.I., Gharbi, K., Butlin, R.K., Hoikkala, A., Kankare, M., and Ritchie, M.G., Inter and intraspecific genomic divergence in Drosophila montana shows evidence for cold adaptation, Genome Biol. Evol., 2018, vol. 10, no. 8, pp. 2086–2101. https://doi.org/10.1093/gbe/evy147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patterson, J.T. and Stone, W.S., Evolution in the Genus Drosophila, Macmillan, 1952.

    Google Scholar 

  70. Phillips, P.C. and Arnold, S.J., Visualizing multivariate selection, Evolution, 1989, vol. 43, no. 6, pp. 1209–1222. https://doi.org/10.2307/2409357

    Article  PubMed  Google Scholar 

  71. Ridgway, A.M., Hood, E.J., Jimenez, J.F., Nunes, M.D.S., and McGregor, A.P., Sox21b underlies the rapid diversification of a novel male genital structure between Drosophila species, Curr. Biol., 2024, vol. 34, no. 5, pp. 1114–1121. https://doi.org/10.1016/j.cub.2024.01.022

    Article  CAS  PubMed  Google Scholar 

  72. Robertson, H.M. and Paterson, H.E.H., Mate recognition and mechanical isolation in Enallagma damselflies (Odonata: Coenagrionidae), Evolution, 1982, vol. 36, no. 2, pp. 243–250. https://doi.org/10.2307/2408042

    Article  PubMed  Google Scholar 

  73. Schmalhausen, I.I., Factors of Evolution (Theory of Stabilizing Selection), Moscow: Publishing House of the USSR Academy of Sciences, 16th printing house trust Polygraphbook in Moscow, 1946.

  74. Schmalhausen, I.I., Factors of Evolution: The Theory of Stabilizing Selection, Philadelphia: Blakiston, 1949.

    Google Scholar 

  75. Simmons, L.W., Sexual selection and genital evolution, Austral. Entomol., 2014, vol. 53, no. 1, pp. 1–17. https://doi.org/10.1111/aen.12053

    Article  Google Scholar 

  76. Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.

    Google Scholar 

  77. Smith, J.M., Disruptive selection, polymorphism and sympatric speciation, Nature, 1962, vol. 195, pp. 60–62. https://doi.org/10.1038/195060a0

    Article  Google Scholar 

  78. Smith, J.M., Sympatric speciation, Am. Nat., 1966, vol. 100, no. 916, pp. 637–650. https://doi.org/10.1086/282457

    Article  Google Scholar 

  79. Sokolov, N.N., Elimination of chromosomes in interspecific hybrids of Drosophila and the problems of distant hybrids, Dokl. Acad. Nauk, 1948, vol. 59, pp. 163–166.

    Google Scholar 

  80. Sokolov, N.N., Interaction of the Nucleus and Cytoplasm during Distal Hybridization of Animals, Publishing House of the Academy of Sciences of the USSR, 1959.

    Google Scholar 

  81. Tanaka, K.M., Hopfen, C., Herbert, M.R., Schlötterer, Ch., Stern, D.L., Masly, J.P., Mcgregor, A.P., and Nunes, M.D.S., Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana, Genetics, 2015, vol. 200, no. 1, pp. 357–369. https://doi.org/10.1534/genetics.114.174045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanaka, K.M., Kamimura, Yo., and Takahashi, A., Mechanical incompatibility caused by modifications of multiple male genital structures using genomic introgression in Drosophila, Evolution, 2018, vol. 72, no. 11, pp. 2406–2418. https://doi.org/10.1111/evo.13592

    Article  CAS  PubMed  Google Scholar 

  83. True, J.R., Liu, J., Stam, L.F., Zeng, Z.-B., and Laurie, C.C., Quantitative genetic analysis of divergence in male secondary sexual traits between Drosophila simulans and Drosophila mauritiana, Evolution, 1997, vol. 51, no. 3, pp. 816–832. https://doi.org/10.1111/j.1558-5646.1997.tb03664.x

    Article  PubMed  Google Scholar 

  84. Tyukmaeva, V.I., Salminen, T.S., Kankare, M., Knott, K.E., and Hoikkala, A., Adaptation to a seasonally varying environment: a strong latitudinal cline in reproductive diapause combined with high gene flow in Drosophila montana, Ecol. Evol., 2011, vol. 1, no. 2, pp. 160–168. https://doi.org/10.1002/ece3.14

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tyukmaeva, V.I., Veltsos, P., Slate, J., Gregson, E., Kauranen, H., Kankare, M., Ritchie, M.G., Butlin, R.K., and Hoikkala, A., Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments, Mol. Ecol., 2015, vol. 24, no. 11, pp. 2809–2819. https://doi.org/10.1111/mec.13202

    Article  CAS  PubMed  Google Scholar 

  86. Vorontsov, N.N., The rate of hamster evolution, and some factors determining its rate, Dokl. Akad. Nauk, 1960, vol. 133, no. 4, pp. 980–983.

    Google Scholar 

  87. Wright, S., On the nature of size factors, Genetics, 1918, vol. 3, no. 4, pp. 367–374. https://doi.org/10.1093/genetics/3.4.367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wright, S., Evolution in Mendelian populations, Genetics, 1931, vol. 16, no. 2, pp. 97–159. https://doi.org/10.1093/genetics/16.2.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wright, S., The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proc. 6th Int. Congr. Genet, 1932, no. 1, pp. 356–366.

  90. Zeng, Z.-B., Liu, J., Stam, L.F., Kao, C.-H., Mercer, J.M., and Laurie, C.C., Genetic architecture of a morphological shape difference between two Drosophila species, Genetics, 2000, vol. 154, no. 1, pp. 299–310. https://doi.org/10.1093/genetics/154.1.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhdanov, M.Iu, Poluéktova, E.V., and Mitrofanov, V.G., The role of inversions in adaptation and speciation, Ontogenez, 1994, vol. 25, no. 2, pp. 20–23.

    PubMed  Google Scholar 

  92. Zhdanov, M.Iu., Mitrofanov, V.G., and Poluèktova, E.V., Character of ecological adaptation in connection with inversion polymorphism in Drosophila lummei, Hackman, Dokl. Akad. Nauk, 1997, vol. 355, no. 3, pp. 422–423.

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was performed within the framework of the State Assignment of the Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 2024, no. 0088-2024-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kulikov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

The article is dedicated to the 120th anniversary of the birth of the outstanding Russian geneticist, Academician Boris Lvovich Astaurov

Translated by A. S. Ermakov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, A.M. “Genes of Speciation”: History and Present: A Brief Review. Russ J Dev Biol 55, 239–249 (2024). https://doi.org/10.1134/S1062360424700231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S1062360424700231

Keywords: