Abstract
This research analyzed Pterocarpus santalinus leaf extract using LC-MS and identified 39 bioactive components, including isorhamnetin, kaempferol, quercetin, and trifolin. Silver and copper nanoparticles (PsAgNPs and PsCuONPs) were synthesized using reducing and capping of identified bioactive compounds and characterized using UV-Vis spectroscopy, XRD, FTIR, FESEM, TEM, Zeta potential, and DLS. PsAgNPs exhibited higher antibacterial activity against drug-resistant strains, with inhibition zones of 18 mm for Escherichia coli and 17 mm for Staphylococcus aureus at 100 µg/mL. In comparison, PsCuONPs showed inhibition zones of 16 and 14 mm at 175 µg/mL, respectively. PsAgNPs demonstrated antibacterial action at lower concentrations (MIC and MBC values at 50–75 µg/mL) compared to PsCuONPs (100 µg/mL). Both nanoparticles induced bacterial membrane perforation and cellular lysis, confirmed by FESEM. Additionally, PsAgNPs demonstrated superior anti-biofilm, antioxidant (DPPH: 6.97 µg/mL; ABTS: 3.92 µg/mL), and anti-inflammatory activities, inhibiting hemolysis (IC50 = 4.17 µg/mL) and protein denaturation (IC50 = 6.33 µg/mL) compared to PsCuONPs. Moreover, they displayed higher cytotoxicity against human breast cancer cell lines. This data suggests that PsAgNPs and PsCuONPs could be promising therapeutic molecules for antibacterial, anti-oxidative, anti-inflammatory, and anti-cancer applications.
Data availability
The data supporting the findings of this investigation are accessible from the corresponding author upon reasonable request.
References
V.V. Lekkala, M.C. Reddy, V.C. Reddy, S.K. Kanthirigala, S. Chitta, K.R. Reddy, D. Lomada, Advancements in nanoparticles-based therapies for biomedical applications. Nano-Structures & Nano-Objects 40, 101365 (2024)
M. Ahamed, M.S. AlSalhi, M. Siddiqui, Silver nanoparticle applications and human health. Clin. Chim. Acta 411, 1841–1848 (2010)
R.D. Hall, T.M. Le, D.E. Haggstrom, R.D. Gentzler, Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res. 4, 515 (2015)
C.W. Hall, T.-F. Mah, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 41, 276–301 (2017)
M. Yazdanian, P. Rostamzadeh, M. Rahbar, M. Alam, K. Abbasi, E. Tahmasebi, H. Tebyaniyan, R. Ranjbar, A. Seifalian, A. Yazdanian, The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review. Bioinorg. Chem. Appl. 2022, 2311910 (2022)
N. Tripathi, M.K. Goshisht, Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl. Bio Mater. 5, 1391–1463 (2022)
V. Lakkim, M.C. Reddy, R.R. Pallavali, K.R. Reddy, C.V. Reddy, A.L. Inamuddin, Bilgrami, D. Lomada, Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics. 9, 902 (2020)
H. Agarwal, A. Nakara, V.K. Shanmugam, Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed. Pharmacother. 109, 2561–2572 (2019)
S. Rajeshkumar, S. Menon, M. Ponnanikajamideen, D. Ali, K. Arunachalam, Anti-inflammatory and antimicrobial potential of Cissus quadrangularis‐assisted copper oxide nanoparticles. J. Nanomater. 2021, 5742981 (2021)
D.D. Nguyen, J.-Y. Lai, Synthesis, bioactive properties, and biomedical applications of intrinsically therapeutic nanoparticles for disease treatment. Chem. Eng. J. 435, 134970 (2022)
J.D. Hayes, A.T. Dinkova-Kostova, K.D. Tew, Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020)
P. Newsholme, V.F. Cruzat, K.N. Keane, R. Carlessi, de P.I.H. Jr Bittencourt, Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 473, 4527–4550 (2016)
L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, L. Zhao, Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9, 7204 (2017)
D. Furman, J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019)
R. Javed, M. Zia, S. Naz, S.O. Aisida, N. Ain, Q. Ao, Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnol. 18, 1–15 (2020)
Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, C.-P. Yu, Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Aspects 444, 226–231 (2014)
S. Bulle, H. Reddyvari, V. Nallanchakravarthula, D.R. Vaddi, Therapeutic potential of Pterocarpus santalinus L.: an update. Pharmacogn. Rev. 10, 43 (2016).
M.K. Husain, G.P. Pratap, M. Alam, Y.I. Munshi, N.Z. Ahmed, Pterocarpus santalinus L. f. Medicinal and Aromatic Plants of India 3, 317–328 (2024)
K. Gopinath, S. Gowri, A. Arumugam, Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem. 3, 1–7 (2013)
R.R. Pallavali, V.L. Degati, D. Lomada, M.C. Reddy, V.R.P. Durbaka, Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 12, e0179245 (2017)
A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology. 23, 085103 (2012)
J. Hudzicki, Kirby-bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 15, 1–23 (2009)
B. Kowalska-Krochmal, R. Dudek-Wicher, The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10, 165 (2021)
Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Quek, Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59, 282–289 (2016)
G.A. O’Toole. Microtiter dish biofilm formation assay. J. Visualized Experiments: JoVE, 2437 (2011)
İ. Gulcin, S.H. Alwasel, DPPH radical scavenging assay. Processes. 11, 2248 (2023)
N.J. Miller, C.A. Rice-Evans, Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radic. Res. 26, 195–199 (1997)
R. Gandhidasan, A. Thamaraichelvan, S. Baburaj. Anti-inflammatory action of Lannea coromandelica by HRBC membrane stabilization. (1991)
K. Gunathilake, K. Ranaweera, H.V. Rupasinghe, In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines. 6, 107 (2018)
T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)
J. Jana, M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6, 86174–86211 (2016)
K. Anandalakshmi, J. Venugobal, V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6, 399–408 (2016)
K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 169, 59–79 (2011)
S.C. Mali, A. Dhaka, C.K. Githala, R. Trivedi, Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol. Rep. 27, e00518 (2020)
M. Sundarrajan, A. Jeelani, V. Santhanam, S. Durgadevi, S. Abirami, Effect of concentration, pH and time on the morphology of silver nanoparticles synthesized by green method using Phyllanthus niruri and Solanum nigrum leaf extracts. Int. J. Curr. Res. Rev. 10, 25–29 (2018)
A.A. Dawood, A.A. Moosa, M.M. Radhi, Green synthesis of silver nanoparticles decorated with exfoliated graphite nanocomposites. Egypt. J. Chem. 65, 651–659 (2022)
M.P. Kainz, L. Legenstein, V. Holzer, S. Hofer, M. Kaltenegger, R. Resel, J. Simbrunner, GIDInd: an automated indexing software for grazing-incidence x-ray diffraction data. J. Appl. Crystallogr. 54, 1256–1267 (2021)
S. Faisal, N.S. Al-Radadi, H. Jan, S.A. Abdullah, Shah, S. Shah, M. Rizwan, Z. Afsheen, Z. Hussain, M.N. Uddin, Curcuma longa mediated synthesis of copper oxide, nickel oxide and Cu-Ni bimetallic hybrid nanoparticles: characterization and evaluation for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings 11, 849 (2021)
W.W. Andualem, F.K. Sabir, E.T. Mohammed, H.H. Belay, B.A. Gonfa, Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J. Nanotechnol. 2020, 2932434 (2020)
P. Rajiv, A. Deepa, P. Vanathi, D. Vidhya, Screening for phytochemicals and FTIR analysis of Myristica dactyloids fruit extracts. Int. J. Pharm. Pharm. Sci. 9, 315–318 (2017)
M. Banach, J. Pulit-Prociak, Proecological method for the Preparation of metal nanoparticles. J. Clean. Prod. 141, 1030–1039 (2017)
Z. Alhalili, Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus globoulus leaf extract: adsorption and design of experiments. Arab. J. Chem. 15, 103739 (2022)
S.V. Patil, H.P. Borase, C.D. Patil, B.K. Salunke, Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl. Biochem. Biotechnol. 167, 776–790 (2012)
S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6, 755–766 (2016)
T. Khairy, D.H. Amin, H.M. Salama, I.M.A. Elkholy, M. Elnakib, H.M. Gebreel, H.A.E. Sayed, Antibacterial activity of green synthesized copper oxide nanoparticles against multidrug-resistant bacteria. Sci. Rep. 14, 25020 (2024)
M. Wypij, T. Jędrzejewski, J. Trzcińska-Wencel, M. Ostrowski, M. Rai, P. Golińska, Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 12, 632505 (2021)
K. Sridhar, A.L. Charles, In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: estimation methods for EC50 using advanced statistical programs. Food Chem. 275, 41–49 (2019)
R.B. Walker, J.D. Everette, Comparative reaction rates of various antioxidants with ABTS radical cation. J. Agric. Food Chem. 57, 1156–1161 (2009)
P.S. Kamble, P.L. Palatty, S. Kamble, Comparative study of anti-inflammatory effects of Rosiglitazone and Pioglitazone with diclofenac sodium in carageenan induced rat hind paw oedema. Int. J. Bas. Appl. Med. Sci. 2, 1–7 (2012)
G. Navale, D.D. Patil, A.A. Patil, K.B. Patil, N.B. Patil, Membrane stabilization assay for anti-inflammatory activity yields misleading results for samples containing traces of methanol. Asian J. Pharm. Res. 9, 169–171 (2019)
A. Banso, S. Adeyemo, Phytochemical and antimicrobial evaluation of ethanolic extract of Dracaena manni bark. Nig. J. Biotech. 18, 27–32 (2007)
D. Gong, Y. Chen, F. Meng, P. Zhao, Y. Lin, Xia, QY & Xiang, 266–277
H. Ahn, G. Lee, B.-C. Han, S.-H. Lee, G.-S. Lee, Maltol, a natural flavor enhancer, inhibits NLRP3 and non-canonical inflammasome activation. Antioxidants 11, 1923 (2022)
N. Ziklo, M. Bibi, P. Salama, The antimicrobial mode of action of maltol and its synergistic efficacy with selected cationic surfactants. Cosmetics. 8, 86 (2021)
F. Alrumaihi, S.A. Almatroodi, H.O.A. Alharbi, W.M. Alwanian, F.A. Alharbi, A. Almatroudi, A.H. Rahmani, Pharmacological potential of Kaempferol, a flavonoid in the management of pathogenesis via modulation of inflammation and other biological activities. Molecules 29, 2007 (2024)
D.K. Patel, Medicinal importance, Pharmacological activities and analytical aspects of a flavonoid glycoside ‘Nicotiflorin’in the medicine. Drug Metabolism and Bioanalysis Letters 15, 2–11 (2022)
A.P. Tambunan, A. Bahtiar, R.R. Tjandrawinata, Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacogn. J. (2017). https://doi.org/10.5530/pj.2017.6.121
W.Y. Teoh, Y.S. Yong, F.N. Razali, S. Stephenie, M. Dawood Shah, J.K. Tan, C. Gnanaraj, N. Mohd Esa, LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations 10, 215 (2023)
M. Zahra, H. Abrahamse, B.P. George, Flavonoids: antioxidant powerhouses and their role in nanomedicine. Antioxidants. 13, 922 (2024)
V. Glushkov, L. Anikina, Y.B. Vikharev, E. Feshina, Y.V. Shklyaev, Synthesis and antiinflammatory and analgesic activity of amidines of 3, 4-dihydroisoquinoline series. Pharm. Chem. J. 39, 533–536 (2005)
S. Özden, D. Atabey, S. Yıldız, H. Göker, Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups. Bioorg. Med. Chem. 13, 1587–1597 (2005)
R. Varshney, S. Bhadauria, M.S. Gaur, R. Pasricha, Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62, 102–104 (2010)
S. Shende, A.P. Ingle, A. Gade, M. Rai, Green synthesis of copper nanoparticles by citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 31, 865–873 (2015)
C. Krishnaraj, R. Ramachandran, K. Mohan, P. Kalaichelvan, Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 93, 95–99 (2012)
T. Munusamy, R. Shanmugam, (2023). Green synthesis of copper oxide nanoparticles synthesized by Terminalia chebula dried fruit extract: characterization and antibacterial action. Cureus 15
N. Liaqat, N. Jahan, T. Anwar, H. Qureshi, Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 10, 952006 (2022)
B. Adebayo-Tayo, A. Salaam, A. Ajibade, (2019). Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5
K. Velsankar, S. Suganya, P. Muthumari, S. Mohandoss, S. Sudhahar, Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of capsicum frutescens. J. Environ. Chem. Eng. 9, 106299 (2021)
M. Sasarom, P. Wanachantararak, P. Chaijareenont, S. Okonogi, Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using caesalpinia Sappan extract. Drug Discov. Ther. 18, 167–177 (2024)
C. Chaikali, N.D. Stola, P. Lampropoulou, D. Papoulis, F.N. Lamari, M. Orkoula, M. Lykouras, K. Avgoustakis, S. Hatziantoniou, Green synthesis and comparative analysis of silver, copper oxide, and bimetallic Ag/CuO nanoparticles using cistus creticus L. extract: physicochemical properties, stability, and antioxidant potential. Int. J. Mol. Sci. 26, 2518 (2025)
G. Tailor, B. Yadav, J. Chaudhary, M. Joshi, C. Suvalka, Green synthesis of silver nanoparticles using ocimum canum and their anti-bacterial activity. Biochemistry and Biophysics Reports 24, 100848 (2020)
K. Reddy, K. McDonald, H. King, A novel arsenic removal process for water using cupric oxide nanoparticles. J. Colloid Interface Sci. 397, 96–102 (2013)
K. Velsankar, A.K. RM, R. Preethi, V. Muthulakshmi, S. Sudhahar, Green synthesis of CuO nanoparticles via allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J. Environ. Chem. Eng. 8, 104123 (2020)
A.R. Nalwade, A. Jadhav, (2013). Biosynthesis of silver nanoparticles using leaf extract of Daturaalba Nees. and evaluation of their antibacterial activity
K.S. Siddiqi, A. Husen, R.A. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16, 1–28 (2018)
F. Mo, H. Li, Y. Li, X. Chen, M. Wang, Z. Li, N. Deng, Y. Yang, X. Huang, R. Zhang, Physiological, biochemical, and transcriptional regulation in a leguminous forage Trifolium pratense L. responding to silver ions. Plant Physiol. Biochem. 162, 531–546 (2021)
H.A. Widatalla, L.F. Yassin, A.A. Alrasheid, S.A.R. Ahmed, M.O. Widdatallah, S.H. Eltilib, A.A. Mohamed, Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 4, 911–915 (2022)
P. Roy, P.-C. Chen, A.P. Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater. Today 18, 447–458 (2015)
K. Srinivas, R. Celestin, A. Babu, P.P. Rajavel, Phytochemical and biological studies of leaves of Indigofera barberi. Asian J. Phytomed. Clin. Res. 1, 1–13 (2013)
M.S. Parvin, N. Das, N. Jahan, M.A. Akhter, L. Nahar, M.E. Islam, Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark. BMC Res. Notes 8, 1–7 (2015)
J. Tian, K.K. Wong, C.M. Ho, C.N. Lok, W.Y. Yu, C.M. Che, J.F. Chiu, P.K. Tam, Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2, 129–136 (2007)
A. Marzban, S.Z. Mirzaei, M. Karkhane, S.K. Ghotekar, A. Danesh, Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J. Drug Deliv. Sci. Technol. 74, 103499 (2022)
M. Sharifi-Rad, P. Pohl, F. Epifano, J.M. Álvarez-Suarez, Green synthesis of silver nanoparticles using astragalus tribuloides delile. root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials 10, 2383 (2020)
S. Singh, S.K. Singh, I. Chowdhury, R. Singh, Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 11, 53 (2017)
M.A. Huq, Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci. 21, 1510 (2020)
C.A. Das, V.G. Kumar, T.S. Dhas, V. Karthick, K. Govindaraju, J.M. Joselin, J. Baalamurugan, Antibacterial activity of silver nanoparticles (biosynthesis): a short review on recent advances. Biocatal. Agric. Biotechnol. 27, 101593 (2020)
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. (2017). https://doi.org/10.2147/IJN.S121956
S. Gurunathan, J.W. Han, D.-N. Kwon, J.-H. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 9, 1–17 (2014)
S. Goswami, T. Sahareen, M. Singh, S. Kumar, Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J. Ind. Eng. Chem. 26, 73–80 (2015)
R.A. Festa, D.J. Thiele, Copper: an essential metal in biology. Curr. Biol. 21, R877–R883 (2011)
R.L. Prior, X. Wu, K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005)
Karimi Javad et al., (2015) Rapid, Green, and Eco-Friendly Biosynthesis of Copper Nanoparticles Using Flower Extract of Aloe Vera. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45, 895–898 https://doi.org/10.1080/15533174.2013.862644
A. Afreen, R. Ahmed, S. Mehboob, M. Tariq, H.A. Alghamdi, A.A. Zahid, I. Ali, K. Malik, A. Hasan, Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Mater. Res. Express 7, 075404 (2020)
M. Ameena, M. Arumugham, K. Ramalingam, S. Rajeshkumar, (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus 15
M. Hublikar, V. Kadu, N. Edake, D. Raut, S. Shirame, M.Z. Ahmed, P. Makam, M.S. Ahmad, R.J. Meshram, R. Bhosale, Design, Synthesis, Anti-Cancer, Anti‐Inflammatory and in Silico studies of 3‐Substituted‐2‐Oxindole derivatives. Chem. Biodivers. 21, e202400844 (2024)
G. Sangeetha, R. Vidhya, In vitro anti-inflammatory activity of different parts of Pedalium murex (L.). inflammation 4, 31–36 (2016)
N.I. Osman, N.J. Sidik, A. Awal, N.A.M. Adam, N.I. Rezali, In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 5, 343 (2016)
M. Qamar, S. Akhtar, T. Ismail, Y. Yuan, N. Ahmad, A. Tawab, A. Ismail, R.T. Barnard, M.A. Cooper, M.A. Blaskovich, Syzygium cumini (L.), Skeels fruit extracts: in vitro and in vivo anti-inflammatory properties. J. Ethnopharmacol. 271, 113805 (2021)
S. Gulla, S. Jabeen, C. Thummala, V.R. Lebaka, S.V. Chinni, S.C. Gopinath, D. Lomada, M.C. Reddy, Anti-inflammatory, anti-bacterial, and anti-cancer activities of ag-nanoparticles generated by plectranthus amboinicus. Inorg. Chem. Commun. 112702 (2024). https://doi.org/10.1016/j.inoche.2024.112702
S.S. Biresaw, P. Taneja, Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals. Mater. Today Proc. 49, 3501–3509 (2022)
S. Sharma, K. Kumar, N. Thakur, S. Chauhan, M. Chauhan, The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach. Bull. Mater. Sci. 43, 1–10 (2020)
N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary, M. Sonker, Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl. Nano Mater. 4, 11428–11457 (2021)
L. Motelica, O.-C. Oprea, B.-S. Vasile, A. Ficai, D. Ficai, E. Andronescu, A.M. Holban, Antibacterial activity of solvothermal obtained ZnO nanoparticles with different morphology and photocatalytic activity against a dye mixture: methylene blue, rhodamine b and methyl orange. Int. J. Mol. Sci. 24, 5677 (2023)
Funding
This study is supported and funded by a Science and Engineering Research Board (SERB/ANRF SURE, Government of India) grant No: SUR/2022/002186 and Rashtriya Uchchatar Shiksha Abhiyan (RUSA-ANU/YVU/Research Project 02 and 19) to DL and CMR.
Author information
Authors and Affiliations
Contributions
Madhava C Reddy, Dakshayani Lomada : Original draft-Supervision, Formal analysis, Conceptualization, Editing, Validation. Swarna Kumari Kanthireegala : Performing the experiments, Data curation, Writing – original draft, Visualization. Veeranjaneya Reddy Lebaka: Writing – review & editing, Visualization, Validation.Lokesh Reddy Bandi, Sindu Kadapana : Performing the experiments, Writing – original draft, Validation, Formal analysis. Subash C.B. Gopinath: Validation, Writing – review & editing.
Corresponding authors
Ethics declarations
Ethical declaration
Not applicable.
Informed consent
Not applicable.
Conflict of Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kanthireegala, S.K., Bandi, L.R., Kadapana, S. et al. Comparative analysis with biosynthesized nanoparticles by reducing and capping of identified Pterocarpus Santalinus bioactive compounds. Appl. Phys. A 131, 883 (2025). https://doi.org/10.1007/s00339-025-08989-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-025-08989-8