Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Comparative analysis with biosynthesized nanoparticles by reducing and capping of identified Pterocarpus Santalinus bioactive compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research analyzed Pterocarpus santalinus leaf extract using LC-MS and identified 39 bioactive components, including isorhamnetin, kaempferol, quercetin, and trifolin. Silver and copper nanoparticles (PsAgNPs and PsCuONPs) were synthesized using reducing and capping of identified bioactive compounds and characterized using UV-Vis spectroscopy, XRD, FTIR, FESEM, TEM, Zeta potential, and DLS. PsAgNPs exhibited higher antibacterial activity against drug-resistant strains, with inhibition zones of 18 mm for Escherichia coli and 17 mm for Staphylococcus aureus at 100 µg/mL. In comparison, PsCuONPs showed inhibition zones of 16 and 14 mm at 175 µg/mL, respectively. PsAgNPs demonstrated antibacterial action at lower concentrations (MIC and MBC values at 50–75 µg/mL) compared to PsCuONPs (100 µg/mL). Both nanoparticles induced bacterial membrane perforation and cellular lysis, confirmed by FESEM. Additionally, PsAgNPs demonstrated superior anti-biofilm, antioxidant (DPPH: 6.97 µg/mL; ABTS: 3.92 µg/mL), and anti-inflammatory activities, inhibiting hemolysis (IC50 = 4.17 µg/mL) and protein denaturation (IC50 = 6.33 µg/mL) compared to PsCuONPs. Moreover, they displayed higher cytotoxicity against human breast cancer cell lines. This data suggests that PsAgNPs and PsCuONPs could be promising therapeutic molecules for antibacterial, anti-oxidative, anti-inflammatory, and anti-cancer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The data supporting the findings of this investigation are accessible from the corresponding author upon reasonable request.

References

  1. V.V. Lekkala, M.C. Reddy, V.C. Reddy, S.K. Kanthirigala, S. Chitta, K.R. Reddy, D. Lomada, Advancements in nanoparticles-based therapies for biomedical applications. Nano-Structures & Nano-Objects 40, 101365 (2024)

    Article  Google Scholar 

  2. M. Ahamed, M.S. AlSalhi, M. Siddiqui, Silver nanoparticle applications and human health. Clin. Chim. Acta 411, 1841–1848 (2010)

    Article  Google Scholar 

  3. R.D. Hall, T.M. Le, D.E. Haggstrom, R.D. Gentzler, Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res. 4, 515 (2015)

    Google Scholar 

  4. C.W. Hall, T.-F. Mah, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 41, 276–301 (2017)

    Article  Google Scholar 

  5. M. Yazdanian, P. Rostamzadeh, M. Rahbar, M. Alam, K. Abbasi, E. Tahmasebi, H. Tebyaniyan, R. Ranjbar, A. Seifalian, A. Yazdanian, The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review. Bioinorg. Chem. Appl. 2022, 2311910 (2022)

    Article  Google Scholar 

  6. N. Tripathi, M.K. Goshisht, Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl. Bio Mater. 5, 1391–1463 (2022)

    Article  Google Scholar 

  7. V. Lakkim, M.C. Reddy, R.R. Pallavali, K.R. Reddy, C.V. Reddy, A.L. Inamuddin, Bilgrami, D. Lomada, Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics. 9, 902 (2020)

    Article  Google Scholar 

  8. H. Agarwal, A. Nakara, V.K. Shanmugam, Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed. Pharmacother. 109, 2561–2572 (2019)

    Article  Google Scholar 

  9. S. Rajeshkumar, S. Menon, M. Ponnanikajamideen, D. Ali, K. Arunachalam, Anti-inflammatory and antimicrobial potential of Cissus quadrangularis‐assisted copper oxide nanoparticles. J. Nanomater. 2021, 5742981 (2021)

    Article  Google Scholar 

  10. D.D. Nguyen, J.-Y. Lai, Synthesis, bioactive properties, and biomedical applications of intrinsically therapeutic nanoparticles for disease treatment. Chem. Eng. J. 435, 134970 (2022)

    Article  Google Scholar 

  11. J.D. Hayes, A.T. Dinkova-Kostova, K.D. Tew, Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020)

    Article  Google Scholar 

  12. P. Newsholme, V.F. Cruzat, K.N. Keane, R. Carlessi, de P.I.H. Jr Bittencourt, Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 473, 4527–4550 (2016)

    Article  Google Scholar 

  13. L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, L. Zhao, Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9, 7204 (2017)

    Article  Google Scholar 

  14. D. Furman, J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019)

    Article  Google Scholar 

  15. R. Javed, M. Zia, S. Naz, S.O. Aisida, N. Ain, Q. Ao, Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnol. 18, 1–15 (2020)

    Article  Google Scholar 

  16. Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, C.-P. Yu, Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Aspects 444, 226–231 (2014)

    Article  Google Scholar 

  17. S. Bulle, H. Reddyvari, V. Nallanchakravarthula, D.R. Vaddi, Therapeutic potential of Pterocarpus santalinus L.: an update. Pharmacogn. Rev. 10, 43 (2016).

    Article  Google Scholar 

  18. M.K. Husain, G.P. Pratap, M. Alam, Y.I. Munshi, N.Z. Ahmed, Pterocarpus santalinus L. f. Medicinal and Aromatic Plants of India 3, 317–328 (2024)

    Google Scholar 

  19. K. Gopinath, S. Gowri, A. Arumugam, Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem. 3, 1–7 (2013)

    Article  Google Scholar 

  20. R.R. Pallavali, V.L. Degati, D. Lomada, M.C. Reddy, V.R.P. Durbaka, Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 12, e0179245 (2017)

    Article  Google Scholar 

  21. A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology. 23, 085103 (2012)

    Article  ADS  Google Scholar 

  22. J. Hudzicki, Kirby-bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 15, 1–23 (2009)

    Google Scholar 

  23. B. Kowalska-Krochmal, R. Dudek-Wicher, The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10, 165 (2021)

    Article  Google Scholar 

  24. Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Quek, Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59, 282–289 (2016)

    Article  Google Scholar 

  25. G.A. O’Toole. Microtiter dish biofilm formation assay. J. Visualized Experiments: JoVE, 2437 (2011)

  26. İ. Gulcin, S.H. Alwasel, DPPH radical scavenging assay. Processes. 11, 2248 (2023)

    Article  Google Scholar 

  27. N.J. Miller, C.A. Rice-Evans, Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radic. Res. 26, 195–199 (1997)

    Article  Google Scholar 

  28. R. Gandhidasan, A. Thamaraichelvan, S. Baburaj. Anti-inflammatory action of Lannea coromandelica by HRBC membrane stabilization. (1991)

  29. K. Gunathilake, K. Ranaweera, H.V. Rupasinghe, In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines. 6, 107 (2018)

    Article  Google Scholar 

  30. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)

    Article  Google Scholar 

  31. J. Jana, M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6, 86174–86211 (2016)

    Article  ADS  Google Scholar 

  32. K. Anandalakshmi, J. Venugobal, V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6, 399–408 (2016)

    Article  ADS  Google Scholar 

  33. K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 169, 59–79 (2011)

    Article  Google Scholar 

  34. S.C. Mali, A. Dhaka, C.K. Githala, R. Trivedi, Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol. Rep. 27, e00518 (2020)

    Article  Google Scholar 

  35. M. Sundarrajan, A. Jeelani, V. Santhanam, S. Durgadevi, S. Abirami, Effect of concentration, pH and time on the morphology of silver nanoparticles synthesized by green method using Phyllanthus niruri and Solanum nigrum leaf extracts. Int. J. Curr. Res. Rev. 10, 25–29 (2018)

    Article  Google Scholar 

  36. A.A. Dawood, A.A. Moosa, M.M. Radhi, Green synthesis of silver nanoparticles decorated with exfoliated graphite nanocomposites. Egypt. J. Chem. 65, 651–659 (2022)

    Google Scholar 

  37. M.P. Kainz, L. Legenstein, V. Holzer, S. Hofer, M. Kaltenegger, R. Resel, J. Simbrunner, GIDInd: an automated indexing software for grazing-incidence x-ray diffraction data. J. Appl. Crystallogr. 54, 1256–1267 (2021)

    Article  ADS  Google Scholar 

  38. S. Faisal, N.S. Al-Radadi, H. Jan, S.A. Abdullah, Shah, S. Shah, M. Rizwan, Z. Afsheen, Z. Hussain, M.N. Uddin, Curcuma longa mediated synthesis of copper oxide, nickel oxide and Cu-Ni bimetallic hybrid nanoparticles: characterization and evaluation for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings 11, 849 (2021)

    Article  Google Scholar 

  39. W.W. Andualem, F.K. Sabir, E.T. Mohammed, H.H. Belay, B.A. Gonfa, Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J. Nanotechnol. 2020, 2932434 (2020)

    Article  Google Scholar 

  40. P. Rajiv, A. Deepa, P. Vanathi, D. Vidhya, Screening for phytochemicals and FTIR analysis of Myristica dactyloids fruit extracts. Int. J. Pharm. Pharm. Sci. 9, 315–318 (2017)

    Article  Google Scholar 

  41. M. Banach, J. Pulit-Prociak, Proecological method for the Preparation of metal nanoparticles. J. Clean. Prod. 141, 1030–1039 (2017)

    Article  Google Scholar 

  42. Z. Alhalili, Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus globoulus leaf extract: adsorption and design of experiments. Arab. J. Chem. 15, 103739 (2022)

    Article  Google Scholar 

  43. S.V. Patil, H.P. Borase, C.D. Patil, B.K. Salunke, Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl. Biochem. Biotechnol. 167, 776–790 (2012)

    Article  Google Scholar 

  44. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6, 755–766 (2016)

    Article  ADS  Google Scholar 

  45. T. Khairy, D.H. Amin, H.M. Salama, I.M.A. Elkholy, M. Elnakib, H.M. Gebreel, H.A.E. Sayed, Antibacterial activity of green synthesized copper oxide nanoparticles against multidrug-resistant bacteria. Sci. Rep. 14, 25020 (2024)

    Article  ADS  Google Scholar 

  46. M. Wypij, T. Jędrzejewski, J. Trzcińska-Wencel, M. Ostrowski, M. Rai, P. Golińska, Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 12, 632505 (2021)

    Article  Google Scholar 

  47. K. Sridhar, A.L. Charles, In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: estimation methods for EC50 using advanced statistical programs. Food Chem. 275, 41–49 (2019)

    Article  Google Scholar 

  48. R.B. Walker, J.D. Everette, Comparative reaction rates of various antioxidants with ABTS radical cation. J. Agric. Food Chem. 57, 1156–1161 (2009)

    Article  Google Scholar 

  49. P.S. Kamble, P.L. Palatty, S. Kamble, Comparative study of anti-inflammatory effects of Rosiglitazone and Pioglitazone with diclofenac sodium in carageenan induced rat hind paw oedema. Int. J. Bas. Appl. Med. Sci. 2, 1–7 (2012)

    Google Scholar 

  50. G. Navale, D.D. Patil, A.A. Patil, K.B. Patil, N.B. Patil, Membrane stabilization assay for anti-inflammatory activity yields misleading results for samples containing traces of methanol. Asian J. Pharm. Res. 9, 169–171 (2019)

    Article  Google Scholar 

  51. A. Banso, S. Adeyemo, Phytochemical and antimicrobial evaluation of ethanolic extract of Dracaena manni bark. Nig. J. Biotech. 18, 27–32 (2007)

    Google Scholar 

  52. D. Gong, Y. Chen, F. Meng, P. Zhao, Y. Lin, Xia, QY & Xiang, 266–277

  53. H. Ahn, G. Lee, B.-C. Han, S.-H. Lee, G.-S. Lee, Maltol, a natural flavor enhancer, inhibits NLRP3 and non-canonical inflammasome activation. Antioxidants 11, 1923 (2022)

    Article  Google Scholar 

  54. N. Ziklo, M. Bibi, P. Salama, The antimicrobial mode of action of maltol and its synergistic efficacy with selected cationic surfactants. Cosmetics. 8, 86 (2021)

    Article  Google Scholar 

  55. F. Alrumaihi, S.A. Almatroodi, H.O.A. Alharbi, W.M. Alwanian, F.A. Alharbi, A. Almatroudi, A.H. Rahmani, Pharmacological potential of Kaempferol, a flavonoid in the management of pathogenesis via modulation of inflammation and other biological activities. Molecules 29, 2007 (2024)

    Article  Google Scholar 

  56. D.K. Patel, Medicinal importance, Pharmacological activities and analytical aspects of a flavonoid glycoside ‘Nicotiflorin’in the medicine. Drug Metabolism and Bioanalysis Letters 15, 2–11 (2022)

    Article  Google Scholar 

  57. A.P. Tambunan, A. Bahtiar, R.R. Tjandrawinata, Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacogn. J. (2017). https://doi.org/10.5530/pj.2017.6.121

    Article  Google Scholar 

  58. W.Y. Teoh, Y.S. Yong, F.N. Razali, S. Stephenie, M. Dawood Shah, J.K. Tan, C. Gnanaraj, N. Mohd Esa, LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations 10, 215 (2023)

    Article  Google Scholar 

  59. M. Zahra, H. Abrahamse, B.P. George, Flavonoids: antioxidant powerhouses and their role in nanomedicine. Antioxidants. 13, 922 (2024)

    Article  Google Scholar 

  60. V. Glushkov, L. Anikina, Y.B. Vikharev, E. Feshina, Y.V. Shklyaev, Synthesis and antiinflammatory and analgesic activity of amidines of 3, 4-dihydroisoquinoline series. Pharm. Chem. J. 39, 533–536 (2005)

    Article  Google Scholar 

  61. S. Özden, D. Atabey, S. Yıldız, H. Göker, Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups. Bioorg. Med. Chem. 13, 1587–1597 (2005)

    Article  Google Scholar 

  62. R. Varshney, S. Bhadauria, M.S. Gaur, R. Pasricha, Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62, 102–104 (2010)

    Article  ADS  Google Scholar 

  63. S. Shende, A.P. Ingle, A. Gade, M. Rai, Green synthesis of copper nanoparticles by citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 31, 865–873 (2015)

    Article  Google Scholar 

  64. C. Krishnaraj, R. Ramachandran, K. Mohan, P. Kalaichelvan, Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 93, 95–99 (2012)

    Article  ADS  Google Scholar 

  65. T. Munusamy, R. Shanmugam, (2023). Green synthesis of copper oxide nanoparticles synthesized by Terminalia chebula dried fruit extract: characterization and antibacterial action. Cureus 15

  66. N. Liaqat, N. Jahan, T. Anwar, H. Qureshi, Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 10, 952006 (2022)

    Article  ADS  Google Scholar 

  67. B. Adebayo-Tayo, A. Salaam, A. Ajibade, (2019). Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5

  68. K. Velsankar, S. Suganya, P. Muthumari, S. Mohandoss, S. Sudhahar, Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of capsicum frutescens. J. Environ. Chem. Eng. 9, 106299 (2021)

    Article  Google Scholar 

  69. M. Sasarom, P. Wanachantararak, P. Chaijareenont, S. Okonogi, Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using caesalpinia Sappan extract. Drug Discov. Ther. 18, 167–177 (2024)

    Article  Google Scholar 

  70. C. Chaikali, N.D. Stola, P. Lampropoulou, D. Papoulis, F.N. Lamari, M. Orkoula, M. Lykouras, K. Avgoustakis, S. Hatziantoniou, Green synthesis and comparative analysis of silver, copper oxide, and bimetallic Ag/CuO nanoparticles using cistus creticus L. extract: physicochemical properties, stability, and antioxidant potential. Int. J. Mol. Sci. 26, 2518 (2025)

    Article  Google Scholar 

  71. G. Tailor, B. Yadav, J. Chaudhary, M. Joshi, C. Suvalka, Green synthesis of silver nanoparticles using ocimum canum and their anti-bacterial activity. Biochemistry and Biophysics Reports 24, 100848 (2020)

    Article  Google Scholar 

  72. K. Reddy, K. McDonald, H. King, A novel arsenic removal process for water using cupric oxide nanoparticles. J. Colloid Interface Sci. 397, 96–102 (2013)

    Article  ADS  Google Scholar 

  73. K. Velsankar, A.K. RM, R. Preethi, V. Muthulakshmi, S. Sudhahar, Green synthesis of CuO nanoparticles via allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J. Environ. Chem. Eng. 8, 104123 (2020)

    Article  Google Scholar 

  74. A.R. Nalwade, A. Jadhav, (2013). Biosynthesis of silver nanoparticles using leaf extract of Daturaalba Nees. and evaluation of their antibacterial activity

  75. K.S. Siddiqi, A. Husen, R.A. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16, 1–28 (2018)

    Article  Google Scholar 

  76. F. Mo, H. Li, Y. Li, X. Chen, M. Wang, Z. Li, N. Deng, Y. Yang, X. Huang, R. Zhang, Physiological, biochemical, and transcriptional regulation in a leguminous forage Trifolium pratense L. responding to silver ions. Plant Physiol. Biochem. 162, 531–546 (2021)

    Article  Google Scholar 

  77. H.A. Widatalla, L.F. Yassin, A.A. Alrasheid, S.A.R. Ahmed, M.O. Widdatallah, S.H. Eltilib, A.A. Mohamed, Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 4, 911–915 (2022)

    Article  ADS  Google Scholar 

  78. P. Roy, P.-C. Chen, A.P. Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater. Today 18, 447–458 (2015)

    Article  Google Scholar 

  79. K. Srinivas, R. Celestin, A. Babu, P.P. Rajavel, Phytochemical and biological studies of leaves of Indigofera barberi. Asian J. Phytomed. Clin. Res. 1, 1–13 (2013)

    Google Scholar 

  80. M.S. Parvin, N. Das, N. Jahan, M.A. Akhter, L. Nahar, M.E. Islam, Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark. BMC Res. Notes 8, 1–7 (2015)

    Article  Google Scholar 

  81. J. Tian, K.K. Wong, C.M. Ho, C.N. Lok, W.Y. Yu, C.M. Che, J.F. Chiu, P.K. Tam, Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2, 129–136 (2007)

    Article  Google Scholar 

  82. A. Marzban, S.Z. Mirzaei, M. Karkhane, S.K. Ghotekar, A. Danesh, Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J. Drug Deliv. Sci. Technol. 74, 103499 (2022)

    Article  Google Scholar 

  83. M. Sharifi-Rad, P. Pohl, F. Epifano, J.M. Álvarez-Suarez, Green synthesis of silver nanoparticles using astragalus tribuloides delile. root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials 10, 2383 (2020)

    Article  Google Scholar 

  84. S. Singh, S.K. Singh, I. Chowdhury, R. Singh, Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 11, 53 (2017)

    Article  Google Scholar 

  85. M.A. Huq, Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci. 21, 1510 (2020)

    Article  Google Scholar 

  86. C.A. Das, V.G. Kumar, T.S. Dhas, V. Karthick, K. Govindaraju, J.M. Joselin, J. Baalamurugan, Antibacterial activity of silver nanoparticles (biosynthesis): a short review on recent advances. Biocatal. Agric. Biotechnol. 27, 101593 (2020)

    Article  Google Scholar 

  87. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. (2017). https://doi.org/10.2147/IJN.S121956

    Article  Google Scholar 

  88. S. Gurunathan, J.W. Han, D.-N. Kwon, J.-H. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 9, 1–17 (2014)

    Article  Google Scholar 

  89. S. Goswami, T. Sahareen, M. Singh, S. Kumar, Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J. Ind. Eng. Chem. 26, 73–80 (2015)

    Article  Google Scholar 

  90. R.A. Festa, D.J. Thiele, Copper: an essential metal in biology. Curr. Biol. 21, R877–R883 (2011)

    Article  Google Scholar 

  91. R.L. Prior, X. Wu, K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005)

    Article  Google Scholar 

  92. Karimi Javad et al., (2015) Rapid, Green, and Eco-Friendly Biosynthesis of Copper Nanoparticles Using Flower Extract of Aloe Vera. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45, 895–898 https://doi.org/10.1080/15533174.2013.862644

  93. A. Afreen, R. Ahmed, S. Mehboob, M. Tariq, H.A. Alghamdi, A.A. Zahid, I. Ali, K. Malik, A. Hasan, Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Mater. Res. Express 7, 075404 (2020)

    Article  ADS  Google Scholar 

  94. M. Ameena, M. Arumugham, K. Ramalingam, S. Rajeshkumar, (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus 15

  95. M. Hublikar, V. Kadu, N. Edake, D. Raut, S. Shirame, M.Z. Ahmed, P. Makam, M.S. Ahmad, R.J. Meshram, R. Bhosale, Design, Synthesis, Anti-Cancer, Anti‐Inflammatory and in Silico studies of 3‐Substituted‐2‐Oxindole derivatives. Chem. Biodivers. 21, e202400844 (2024)

    Article  Google Scholar 

  96. G. Sangeetha, R. Vidhya, In vitro anti-inflammatory activity of different parts of Pedalium murex (L.). inflammation 4, 31–36 (2016)

    Google Scholar 

  97. N.I. Osman, N.J. Sidik, A. Awal, N.A.M. Adam, N.I. Rezali, In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 5, 343 (2016)

    Article  Google Scholar 

  98. M. Qamar, S. Akhtar, T. Ismail, Y. Yuan, N. Ahmad, A. Tawab, A. Ismail, R.T. Barnard, M.A. Cooper, M.A. Blaskovich, Syzygium cumini (L.), Skeels fruit extracts: in vitro and in vivo anti-inflammatory properties. J. Ethnopharmacol. 271, 113805 (2021)

    Article  Google Scholar 

  99. S. Gulla, S. Jabeen, C. Thummala, V.R. Lebaka, S.V. Chinni, S.C. Gopinath, D. Lomada, M.C. Reddy, Anti-inflammatory, anti-bacterial, and anti-cancer activities of ag-nanoparticles generated by plectranthus amboinicus. Inorg. Chem. Commun. 112702 (2024). https://doi.org/10.1016/j.inoche.2024.112702

  100. S.S. Biresaw, P. Taneja, Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals. Mater. Today Proc. 49, 3501–3509 (2022)

    Article  Google Scholar 

  101. S. Sharma, K. Kumar, N. Thakur, S. Chauhan, M. Chauhan, The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach. Bull. Mater. Sci. 43, 1–10 (2020)

    Article  Google Scholar 

  102. N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary, M. Sonker, Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl. Nano Mater. 4, 11428–11457 (2021)

    Article  Google Scholar 

  103. L. Motelica, O.-C. Oprea, B.-S. Vasile, A. Ficai, D. Ficai, E. Andronescu, A.M. Holban, Antibacterial activity of solvothermal obtained ZnO nanoparticles with different morphology and photocatalytic activity against a dye mixture: methylene blue, rhodamine b and methyl orange. Int. J. Mol. Sci. 24, 5677 (2023)

    Article  Google Scholar 

Download references

Funding

This study is supported and funded by a Science and Engineering Research Board (SERB/ANRF SURE, Government of India) grant No: SUR/2022/002186 and Rashtriya Uchchatar Shiksha Abhiyan (RUSA-ANU/YVU/Research Project 02 and 19) to DL and CMR.

Author information

Authors and Affiliations

Authors

Contributions

Madhava C Reddy, Dakshayani Lomada : Original draft-Supervision, Formal analysis, Conceptualization, Editing, Validation. Swarna Kumari Kanthireegala : Performing the experiments, Data curation, Writing – original draft, Visualization. Veeranjaneya Reddy Lebaka: Writing – review & editing, Visualization, Validation.Lokesh Reddy Bandi, Sindu Kadapana : Performing the experiments, Writing – original draft, Validation, Formal analysis. Subash C.B. Gopinath: Validation, Writing – review & editing.

Corresponding authors

Correspondence to Dakshayani Lomada or Madhava C. Reddy.

Ethics declarations

Ethical declaration

Not applicable.

Informed consent

Not applicable.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanthireegala, S.K., Bandi, L.R., Kadapana, S. et al. Comparative analysis with biosynthesized nanoparticles by reducing and capping of identified Pterocarpus Santalinus bioactive compounds. Appl. Phys. A 131, 883 (2025). https://doi.org/10.1007/s00339-025-08989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-025-08989-8

Keywords