Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Emerging roles of Midnolin in Cancer, Parkinson’s Disease, and Metabolic dysfunction

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Midnolin has emerged as a versatile protein involved in gene regulation, metabolism and disease. It controls Early Response Genes by promoting their ubiquitin-independent proteasomal degradation. It also affects glucose metabolism by interacting with glucokinase in pancreatic beta cells. Recent studies have highlighted the significant role of Midnolin in various human diseases, including non-alcoholic fatty liver disease, Parkinson’s disease, and several malignancies such as liver cancer, breast cancer, gastric cancer, multiple myeloma and B-cell leukemias and lymphomas. Moreover, it has also been linked to lipid metabolism, mitochondrial function and tumor growth. However, its exact role is still not fully understood. This review summarizes current knowledge about Midnolin functions and highlights its potential target for future research in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Tsukahara M, Suemori H, Noguchi S, Ji ZS, Tsunoo H (2000) Novel nucleolar protein, midnolin, is expressed in the mesencephalon during mouse development. Gene 254(1–):45–55

    Article  CAS  PubMed  Google Scholar 

  2. Gu X, Nardone C, Kamitaki N, Mao A, Elledge SJ, Greenberg ME (2023) The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381(6660):eadh5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Du J, Zhang J, He T, Li Y, Su Y, Tie F et al (2016) Stuxnet facilitates the degradation of polycomb protein during development. Dev Cell 376:507–519

    Article  Google Scholar 

  4. Zhao Z, Zhao X, He T, Wu X, Lv P, Zhu AJ et al (2021) Epigenetic regulator Stuxnet modulates octopamine effect on sleep through a Stuxnet-Polycomb-Octβ2R cascade. EMBO Rep. ;22[2]:e47910.

  5. Nardone C, Gao J, Seo HS, Mintseris J, Ort L, Yip MCJ et al (2025) Structural basis for the midnolin-proteasome pathway and its role in suppressing myeloma. Mol Cell 8513:2597–2609e11

    Article  Google Scholar 

  6. Peddada N, Zhong X, Yin Y, Lazaro DR, Wang J, Lyon S et al (2025) Structural insights into the ubiquitin-independent midnolin-proteasome pathway. Proc Natl Acad Sci U S A 122(19):e2505345122

    Article  CAS  PubMed  Google Scholar 

  7. Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S (2013) Identification of the ubiquitin-like domain of Midnolin as a new glucokinase interaction partner. J Biol Chem 28850:35824–35839

    Article  Google Scholar 

  8. Obara Y, Sato H, Nakayama T, Kato T, Ishii K (2019) Midnolin is a confirmed genetic risk factor for parkinson’s disease. Ann Clin Transl Neurol 611:2205–2211

    Article  Google Scholar 

  9. Zhong X, Peddada N, Moresco JJ, Wang J, Jiang Y, Rios JJ et al (2024) Viable mutations of mouse Midnolin suppress B cell malignancies. J Exp Med 221(6):e20232132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kweon SM, Irimia-Dominguez J, Kim G, Fueger PT, Asahina K, Lai KK et al (2023) Heterozygous Midnolin knockout attenuates severity of nonalcoholic fatty liver disease in mice fed a Western-style diet high in fat, cholesterol, and Fructose. Am J Physiol Gastrointest Liver Physiol 3252:G147–G157

    Article  Google Scholar 

  11. Bahrami S, Drabløs F (2016) Gene regulation in the immediate-early response process. Adv Biol Regul 62:37–49

    Article  CAS  PubMed  Google Scholar 

  12. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV (2018) Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 12:79

    Article  PubMed  PubMed Central  Google Scholar 

  13. Healy S, Khan P, Davie JR (2013) Immediate early response genes and cell transformation. Pharmacol Ther 1371:64–77

    Article  Google Scholar 

  14. Adamson CS, Nevels MM (2020) Bright and early: inhibiting human cytomegalovirus by targeting major immediate-early gene expression or protein function. Viruses 12(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agnarelli A, Chevassut T, Mancini EJ (2018) IRF4 in multiple myeloma—biology, disease and therapeutic target. Leuk Res 72:52–58

    Article  CAS  PubMed  Google Scholar 

  16. Minatohara K, Akiyoshi M, Okuno H (2016) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci 8:78

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sternisha SM, Miller BG (2019) Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 663:199–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cullen KS, Al-Oanzi ZH, O’Harte FPM, Agius L, Arden C (2014) Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase-2 and the glucokinase regulatory protein. Biochim Biophys Acta 18436:1123–1134

    Article  Google Scholar 

  19. Seebacher F, Zeigerer A, Kory N, Krahmer N (2020) Hepatic lipid droplet homeostasis and fatty liver disease. Semin Cell Dev Biol 108:72–81

    Article  CAS  PubMed  Google Scholar 

  20. Obara Y, Ishii K (2018) Transcriptome analysis reveals that Midnolin regulates mrna expression levels of multiple parkinson’s disease causative genes. Biol Pharm Bull 411:20–23

    Article  Google Scholar 

  21. Billingsley KJ, Bandres-Ciga S, Ding J, Hernandez D, Gibbs JR, Blauwendraat C et al (2020) MIDN locus structural variants and parkinson’s disease risk. Ann Clin Transl Neurol 74:602–603

    Article  Google Scholar 

  22. Kaur K, Gill JS, Bansal PK, Deshmukh R (2017) Neuroinflammation - a major cause for striatal dopaminergic degeneration in parkinson’s disease. J Neurol Sci 381:308–314

    Article  CAS  PubMed  Google Scholar 

  23. Stefanis L (2012) Α-synuclein in parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ge P, Dawson VL, Dawson TM (2020) PINK1 and parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegener 15(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haddad D, Nakamura K (2015) Understanding the susceptibility of dopamine neurons to mitochondrial stressors in parkinson’s disease. FEBS Lett 589:3702–3713 [24 0 0]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Obara Y, Imai T, Sato H, Takeda Y, Kato T, Ishii K (2017) Midnolin is a novel regulator of parkin expression and is associated with parkinson’s disease. Sci Rep 7(1):5885

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang XG, Li WT, Jin X, Fu C, Jiang W, Bai J et al (2025) Comprehensive analysis reveals Midnolin as a potential prognostic, therapeutic, and immunological cancer biomarker. Biomedicines 13(2):276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kweon SM, Kim G, Jeong Y, Huang W, Lee JS, Lai KKY (2022) Midnolin regulates liver cancer cell growth in vitro and in vivo. Cancers (Basel) 14(6):1421

    Article  CAS  PubMed  Google Scholar 

  29. Wu K, Lin F (2024) Lipid metabolism as a potential target of liver cancer. J Hepatocell Carcinoma 11:327–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang S, Zhang J, He T, Zhou J, Liu Z (2025) Midnolin correlates with anti-tumour immunity and promotes liver cancer progression through β-catenin. J Cell Mol Med 29(6):e70472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X (2022) β-Catenin signaling in hepatocellular carcinoma. J Clin Invest [Internet]. Feb 15 [cited 2025 Apr 11];132[4]. Available from: https://www.jci.org/articles/view/154515

  32. Kriss CL, Pinilla-Ibarz JA, Mailloux AW, Powers JJ, Tang CHA, Kang CW et al (2012) Overexpression of TCL1 activates the endoplasmic reticulum stress response: a novel mechanism of leukemic progression in mice. Blood 120(5):1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L et al (2019) RNA n6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer 18(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K et al (2020) The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun [Lond] 4010:484–500

    Article  Google Scholar 

  35. Ni J, Lu X, Gao X, Jin C, Mao J (2024) Demethylase FTO inhibits the occurrence and development of triple-negative breast cancer by blocking m 6A-dependent miR-17-5p maturation-induced ZBTB4 depletion. Acta Biochim Biophys Sin [Shanghai] 56(1):114–128

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Y, Wang Q, Deng H, Xu B, Zhou Y, Liu J et al (2022) N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis 13(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu YY, Li T, Shen A, Bao XQ, Lin JF, Guo LZ (2023) FTO up-regulation induced by MYC suppresses tumour progression in Epstein-Barr virus-associated gastric cancer. Clin Transl Med 13(12):e1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guan X, Xu L, Liu J, Fei H, Wang C (2025) Single-cell sequencing and transcriptome analysis explored changes in Midnolin-Related immune microenvironment and constructed combined prognostic model for pancreatic cancer. J Inflamm Res 18:2975–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G (2021) The role of the transcription factor EGR1 in cancer. Front Oncol 11:642547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song D, Lian Y, Zhang L (2023) The potential of activator protein 1 [AP-1] in cancer targeted therapy. Front Immunol 14:1224892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong C, Ye DX, Zhang WB, Pan HY, Zhang ZY, Zhang L Overexpression of c-fos promotes cell invasion and migration via CD44 pathway in oral squamous cell carcinoma. [cited 2024 Nov 6]; Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/jop.12296

  42. Peng L, Sun E, Zhang J, Cai L, Zheng J, Zeng Y (2024) The effect of c-Fos on the prognosis, proliferation, and invasion of oral squamous cell carcinoma. Oral Dis 307:4266–4277

    Article  Google Scholar 

  43. Wang S, Xu X, Xu F, Meng Y, Sun C, Shi L et al (2016) Combined expression of c-jun, c-fos, and p53 improves Estimation of prognosis in oral squamous cell carcinoma. Cancer Invest 348:393–400

    Article  Google Scholar 

  44. Gupta S, Kumar P, Kaur H, Sharma N, Saluja D, Bharti AC et al (2015) Selective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer. Sci Rep 5(1):16811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuonen F, Li NY, Haensel D, Patel T, Gaddam S, Yerly L et al (2021) c-FOS drives reversible basal to squamous cell carcinoma transition. Cell Rep. ;37[1]:109774.

  46. Tang C, Jiang Y, Shao W, Shi W, Gao X, Qin W et al (2016) Abnormal expression of FOSB correlates with tumor progression and poor survival in patients with gastric cancer. Int J Oncol 49(4):1489–1496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK: Conceptualization, wrote the main manuscript text, prepared the figures and tablesPKS: Editing, manuscript writingAV: Editing, manuscript writingAll authors reviewed the manuscript.

Corresponding author

Correspondence to Madhur Kalyan.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Ethical approval

Not required.

Consent to publish

All the authors have read the manuscript and consent to publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyan, M., Singh, P.K. & Verma, A. Emerging roles of Midnolin in Cancer, Parkinson’s Disease, and Metabolic dysfunction. Mol Biol Rep 52, 1022 (2025). https://doi.org/10.1007/s11033-025-11120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-025-11120-y

Keywords