Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Targeting mesenchymal-epithelial transition factor signaling in cancer: from genetic alterations to clinical advances and future prospects

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The c-Met (mesenchymal-epithelial transition factor) receptor tyrosine kinase, upon activation by its ligand, hepatocyte growth factor (HGF), plays an important role in regulating cellular processes such as proliferation, survival, and metastasis. Dysregulation of c-Met signaling, including overexpression, gene amplification, and mutations, is associated with the development and progression of various cancers, such as non-small cell lung cancer (NSCLC), gastric cancer, and hepatocellular carcinoma. This review explores the oncogenic mechanisms involving c-Met altered cancers, highlighting how dysregulated c-Met signaling promotes tumor growth and metastasis. This work offers a detailed analysis of c-Met expression patterns in different tissues and examines the frequency of c-Met alterations across various cancer types. Advancements in molecular diagnostics have significantly improved the clinical detection of c-Met alterations, facilitating the precise identification of patients eligible for c-Met-targeted therapies. While initial clinical trials of c-Met inhibitors demonstrated promising outcomes, the emergence of resistance remains a major hurdle. This review also covers the mechanisms contributing to resistance, such as secondary mutations, activation of alternative signaling pathways, and tumor cell phenotypic changes. Additionally, it examines current therapeutic approaches targeting c-Met, including small molecule inhibitors, monoclonal antibodies, and combination therapies designed to overcome resistance. The discussion extends to future challenges in c-Met inhibition, highlighting the need for innovative therapeutic strategies and combination regimens to enhance efficacy and mitigate resistance and thus the review emphasizes the transformative potential of c-Met-targeted therapies in advancing cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mohan CD, Shanmugam MK, Gowda SG, Chinnathambi A, Rangappa KS, Sethi G (2024) C-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. Phytomedicine 128:155379

    Article  CAS  PubMed  Google Scholar 

  2. Faiella A, Riccardi F, Cartenì G, Chiurazzi M, Onofrio L (2022) The emerging role of c-met in carcinogenesis and clinical implications as a possible therapeutic target. J Oncol 2022(1):5179182

    PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z (2018) Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 17:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12(2):89–103. https://doi.org/10.1038/nrc3205

    Article  CAS  PubMed  Google Scholar 

  5. European Bioinformatics Institute ChEMBL database [Internet]. Hinxton (UK): EMBL-EBI; [cited 2025 Mar 31]. Available from: https://www.ebi.ac.uk/chembl/

  6. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7:504–516

    Article  CAS  PubMed  Google Scholar 

  7. Organ SL, Tsao MS (2011) An overview of the c-MET signaling pathway. Ther Adv Med Oncol 3(1suppl):S7-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ariyawutyakorn W, Saichaemchan S, Garcia MV, Understanding and targeting MET signaling in solid tumors - are we there yet? J. Cancer. 7 633–649. doi:, Petrini ANDI (2016) Biology of MET: a double life between normal tissue repair and tumor progression, Ann. Transl. Med. 3 (2015) 82. doi: 10.3978/j.issn.2305-5839.2015.03.58

  9. Barrow-Mcgee R, Kermorgant S (2014) Met endosomal signalling: in the right place, at the right time. Int J Biochem Cell Biol 49:69–74. https://doi.org/10.1016/j.biocel.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  10. Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ (2014) The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. Onco Targets Ther 4:969–983

    Google Scholar 

  11. Pasquini G, Giaccone G (2018) C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs 27(4):363–375

    Article  CAS  PubMed  Google Scholar 

  12. NCBI MET proto-oncogene, receptor tyrosine kinase [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; updated 6 Jul 2025 [cited 2025 Jul 13]. Gene ID: 4233. Available from: https://www.ncbi.nlm.nih.gov/gene/4233

  13. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science. ;347(6220):1260419. 10.1126/science.1260419.The Human Protein Atlas. RNA expression data in human tissues (version 24.0). Available from https://www.proteinatlas.org/humanproteome/tissue/data (accessed July 2025)

  14. Wolf J, Hochmair M, Han JY, Reguart N, Souquet PJ, Smit EF, Orlov SV, Vansteenkiste J, Nishio M, de Jonge M, Akerley W (2024) Capmatinib in MET exon 14-mutated non-small-cell lung cancer: final results from the open-label, phase 2 GEOMETRY mono-1 trial. Lancet Oncol 25(10):1357–1370

    Article  CAS  PubMed  Google Scholar 

  15. Paik PK, Felip E, Veillon R, Sakai H, Cortot AB, Garassino MC, Mazieres J, Viteri S, Senellart H, Van Meerbeeck J, Raskin J (2020) Tepotinib in non–small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med 383(10):931–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Song Y, Xia F, Liu Y, Zhang L, Yang J, Tu H, Long B, Sui J, Wang Y (2025) Adverse event profile of Crizotinib in real-world from the FAERS database: a 12-year pharmacovigilance study. BMC Pharmacol Toxicol 26(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choueiri TK, Heng DY, Lee JL, Cancel M, Verheijen RB, Mellemgaard A, Ottesen LH, Frigault MM, L’Hernault A, Szijgyarto Z, Signoretti S (2020) Efficacy of savolitinib vs sunitinib in patients with MET-driven papillary renal cell carcinoma: the SAVOIR phase 3 randomized clinical trial. JAMA Oncol 6(8):1247–1255

    Article  PubMed  Google Scholar 

  18. Choueiri TK, Vaishampayan U, Rosenberg JE, Logan TF, Harzstark AL, Bukowski RM, Rini BI, Srinivas S, Stein MN, Adams LM, Ottesen LH (2013) Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 31(2):181–186

    Article  CAS  PubMed  Google Scholar 

  19. McGregor B, Mortazavi A, Cordes L, Salabao C, Vandlik S, Apolo AB (2022) Management of adverse events associated with cabozantinib plus nivolumab in renal cell carcinoma: a review. Cancer Treat Rev 103:102333

    Article  CAS  PubMed  Google Scholar 

  20. Dong Y, Xu J, Sun B, Wang J, Wang Z. (2022). MET-targeted therapies and clinical outcomes: A systematic literature review. Molecular Diagnosis & Therapy 26:203–227.

  21. Watermann I, Schmitt B, Stellmacher F et al (2015) Improved diagnostics targeting c-MET in non-small cell lung cancer: expression, amplification and activation? Diagn Pathol 10:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Recondo G, Che J, Jänne PA, Awad MM (2020) Targeting MET dysregulation in cancer. Cancer Discov 10(7):922–934. https://doi.org/10.1158/2159-8290.CD-19-1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo R, Berry LD, Aisner DL et al (2019) MET IHC is a poor screen for MET amplification or MET exon 14 mutations in lung adenocarcinomas: data from a tri-institutional cohort of the lung cancer mutation consortium. J Thorac Oncol 14:1666–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou J, Zhang XC, Xue S (2023) SYK-mediated epithelial cell state is associated with response to c-Met inhibitors in c-Met-overexpressing lung cancer. Signal Transduct Target Ther 8:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bubendorf L, Dafni U, Schobel M et al (2017) Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: results from the European thoracic oncology platform (ETOP) lungscape project. Lung Cancer 111:143–149

    Article  PubMed  Google Scholar 

  26. Sun D, Wu W, Wang L, Qu J, Han Q, Wang H, Song S, Liu N, Wang Y, Hou H (2023) Identification of MET fusions as novel therapeutic targets sensitive to MET inhibitors in lung cancer. J Transl Med 21(1):150. https://doi.org/10.1186/s12967-023-03999-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reis H, Metzenmacher M, Goetz M et al (2018) MET expression in advanced non-small-cell lung cancer: effect on 10 Han et al JTO clinical and research reports 5 No. clinical outcomes of chemotherapy, targeted therapy, and immunotherapy. Clin Lung Cancer 19:e441e463

    Article  Google Scholar 

  28. Janjigian YY, Tang LH, Coit DG et al (2011) MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev 20(5):1021–1027. https://doi.org/10.1158/1055-9965.EPI-10-1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee HE, Kim MA, Lee HS et al (2012) MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer 107(2):325–333. https://doi.org/10.1038/bjc.2012.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Y, Tian -M-M, Zhou L-X, You W-C, Li J-Y (2012) Value of c-Met for predicting progression of precancerous gastric lesions in rural Chinese population. Chin J Cancer Res 24(1):18–22. https://doi.org/10.1007/s11670-012-0018-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen C, Kim H, Liska D et al (2012) MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol Cancer Ther 11(3):660–669. https://doi.org/10.1158/1535-7163.MCT-11-0754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim J, Fox C, Peng S (2014) Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma. J Clin Invest 124(12):5145–5158. https://doi.org/10.1172/JCI75200

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Jiang X, Jiang Y et al (2016) Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur J Med Chem 108:495–504

    Article  CAS  PubMed  Google Scholar 

  34. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC (2000) Crosstalk between epidermal growth factor receptor and cMet signal pathways in transformed cells. J Biol Chem 275:8806–8811

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Xia M, Jin K et al (2018) Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 17:45

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang K, Sung I, Fang W et al (2018) Correlation between HGF/c-Met and Notch1 signaling pathways in human gastric cancer cells. Oncol Rep 40:294–230

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Rao B, Lou J et al (2020) The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol 8:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Miao L, Wang S et al (2022) Study on the expression of c-Met in gastric cancer and its correlation with preoperative serum tumor markers and prognosis. World J Surg Oncol 20:204. https://doi.org/10.1186/s12957-022-02659-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai X, Dong Q, Xu F, Wu S, Yang D, Liu C, Li Y, Li Z, Ma D (2021) Correlation of c-MET expression with clinical characteristics and the prognosis of colorectal cancer. J Gastrointest Oncol 12(5):2203–2210. https://doi.org/10.21037/jgo-21-536

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richard S, Lips CJ, Walther MM, Tsui LC, Geil L, Orcutt ML, Stackhouse T, Lipan J, Slife L, Brauch H, Decker J, Niehans G, Hughson MD, Moch H, Storkel S, Lerman MI, Linehan WM, Zbar B (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16(1):68–73. https://doi.org/10.1038/ng0597-68

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I, Zhuang Z, Jeffers M, Vande Woude G, Neumann H, Walther M, Linehan WM, Zbar B (1998) Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58(8):1719–1722 PMID: 9563489

    CAS  PubMed  Google Scholar 

  42. Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, Pham T, Weil RJ, Candidus S, Lubensky IA, Linehan WM, Zbar B, Weirich G (1998) Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 20(1):66–9. https://doi.org/10.1038/1727

    Article  CAS  PubMed  Google Scholar 

  43. Sebai M, Tulasne D, Caputo SM, Verkarre V, Fernandes M, Guérin C, Reinhart F, Adams S, Maugard C, Caron O, Guillaud-Bataille M, Berthet P, Bignon YJ, Bressac-de Paillerets B, Burnichon N, Chiesa J, Giraud S, Lejeune S, Limacher JM, de Pauw A, Stoppa-Lyonnet D, Zattara-Cannoni H, Deveaux S, Lidereau R, Richard S, Rouleau E (2022) Novel germline MET pathogenic variants in French patients with papillary renal cell carcinomas type I. Hum Mutat 43(3):316–327. https://doi.org/10.1002/humu.24313Epub 2022 Jan 19. PMID: 34882875

    Article  CAS  PubMed  Google Scholar 

  44. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, Zbar B, Vande Woude GF (1997) Activating mutations for the Met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A 94(21):11445–11450. https://doi.org/10.1073/pnas.94.21.11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bardelli A, Longati P, Gramaglia D, Basilico C, Tamagnone L, Giordano S, Ballinari D, Michieli P, Comoglio PM (1998) Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proc Natl Acad Sci U S A 95(24):14379–14383. https://doi.org/10.1073/pnas.95.24.14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michieli P, Basilico C, Pennacchietti S, Maffè A, Tamagnone L, Giordano S, Bardelli A, Comoglio PM (1999) Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 18(37):5221–31. https://doi.org/10.1038/sj.onc.1202899

    Article  CAS  PubMed  Google Scholar 

  47. Park WS et al (1999) Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 59(2):307–310

    CAS  PubMed  Google Scholar 

  48. Hara S et al (2006) Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1α in human salivary gland cancer cells. Oral Oncol 42(6):593–598. https://doi.org/10.1016/j.oraloncology.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  49. Klosek SK et al (2005) CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochemical and biophysical research communications vol. 336,2 : 408 – 16. https://doi.org/10.1016/j.bbrc.2005.08.106

  50. Hara S, Nakashiro KI, Goda H, Hamakawa H (2008) Role of Akt isoforms in HGF-induced invasive growth of human salivary gland cancer cells. Biochem Biophys Res Commun 370(1):123–128

    Article  CAS  PubMed  Google Scholar 

  51. Kim CH, Moon SK, Bae JH, Ho Lee J, Ho Han J, Kim K, Chang Choi E (2006) Expression of hepatocyte growth factor and c-Met in hypopharyngeal squamous cell carcinoma. Acta Otolaryngol 126(1):88–94

    Article  CAS  PubMed  Google Scholar 

  52. Segovia R, Arroyo G, Ituarte C, Inklemona C, Rojo S, Salvatierra A, Berlinghieri G, Saucedo S, Monteros Alvi M, Lamas R (2019) Over-expression of c-MET in biliary tract cancer: prevalence and clinical-molecular correlation (ILOGI). Ann Oncol 30(Suppl 4):iv72 Abstract P-263

    Google Scholar 

  53. Gray MJ et al (2015) Mutations preventing regulated exon skipping in MET cause osteofibrous dysplasia. Am J Hum Genet 97(6):837–847. https://doi.org/10.1016/j.ajhg.2015.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma PC, Kijima T, Maulik G et al (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63:6272–6281

    CAS  PubMed  Google Scholar 

  55. Voortman J, Harada T, Chang RP, Killian JK, Suuriniemi M, Smith WI, Meltzer PS, Lucchi M, Wang Y, Giaccone G (2013) Detection and therapeutic implications of c-Met mutations in small cell lung cancer and neuroendocrine tumors. Curr Pharm Des 19(5):833–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Y, Gao L, Ma D, Qiu T, Li W, Li W, Guo L, Xing P, Liu B, Deng L, Fu J (2018) Identification of MET exon14 skipping by targeted DNA-and RNA-based next-generation sequencing in pulmonary sarcomatoid carcinomas. Lung Cancer 122:113–119

    Article  PubMed  Google Scholar 

  57. Davies KD, Lomboy A, Lawrence CA, Yourshaw M, Bocsi GT, Camidge DR, Aisner DL (2019) DNA-based versus RNA-based detection of MET exon 14 skipping events in lung cancer. J Thorac Oncol 14(4):737–741

    Article  CAS  PubMed  Google Scholar 

  58. Jurkiewicz, M., Saqi, A., Mansukhani, M. M., et al. (2020). Efficacy of DNA versus RNA NGS-based Methods in MET Exon 14 skipping mutation detection. Journal of Clinical Oncology 38(15_suppl):9036–9036.

  59. Farragher SM, Tanney A, Kennedy RD, Paul Harkin D (2008) RNA expression analysis from formalin fixed paraffin embedded tissues. Histochem Cell Biol 130(3):435–445

    Article  CAS  PubMed  Google Scholar 

  60. McCombie WR, McPherson JD, Mardis ER (2019) Next-generation sequencing technologies. Cold Spring Harb Perspect Med 9(11):a036798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poirot B, Doucet L, Benhenda S, Champ J, Meignin V, Lehmann-Che J (2017) MET exon 14 alterations and new resistance mutations to tyrosine kinase inhibitors: risk of inadequate detection with current amplicon-based NGS panels. J Thorac Oncol 12(10):1582–1587

    Article  PubMed  Google Scholar 

  62. Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A (2020) MET-dependent solid tumors—molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 17(9):569–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Drilon A, Wang L, Arcila ME (2015) Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res 21:3631–3639

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  65. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Das R, Jakubowski MA, Spildener J, Cheng YW (2022) Identification of novel MET exon 14 skipping variants in non-small cell lung cancer patients: a prototype workflow involving in silico prediction and RT-PCR. Cancers 14(19):4814. https://doi.org/10.3390/cancers14194814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(14):2833–2838

    Article  CAS  PubMed  Google Scholar 

  68. Yuan P, Xue X, Qiu T, Ying J (2024) MET alterations detection platforms and clinical implications in solid tumors: a comprehensive review of literature. Ther Adv Med Oncol 16:17588359231221910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee J, Kim ST, Kim K, Lee H, Kozarewa I, Mortimer PG, Odegaard JI, Harrington EA, Lee J, Lee T, Oh SY (2019) Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: the VIKTORY umbrella trial. Cancer Discov 9(10):1388–1405

    Article  CAS  PubMed  Google Scholar 

  70. Heydt C, Becher AK, Wagener-Ryczek S (2019) Comparison of in situ and extraction-based methods for the detection of MET amplifications in solid tumors. Comput Struct Biotechnol J 17:1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan Y, Sun R, Wang Z, Zhang Y, Xiao X, Liu Y, Xin B, Xiong H, Lu D, Ma J (2023) Detection of MET amplification by droplet digital PCR in peripheral blood samples of non-small cell lung cancer. J Cancer Res Clin Oncol 149(5):1667–1677

    Article  CAS  PubMed  Google Scholar 

  72. Guo R, Luo J, Chang J et al (2020) MET-dependent solid tumors - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 17:569–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spigel DR, Ervin TJ, Ramlau RA et al (2013) Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 31:4105–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. score MS, Post-Calculating CASCO (2015) H-Score. https://www.ascopost.com/issues/april-10-2015/calculating-h-score/

  75. Seager M, Aisner DL, Davies KD (2019) Oncogenic gene fusion detection using anchored multiplex polymerase chain reaction followed by next generation sequencing. JoVE (Journal Visualized Experiments) 5(149):e59895

    Google Scholar 

  76. Li Y, Gao L, Ma D, Qiu T, Li W, Li W, Guo L, Xing P, Liu B, Deng L, Fu J, Li J, Yu Y, Ying J (2018) Identification of MET exon14 skipping by targeted DNAand RNA-based next-generation sequencing in pulmonary sarcomatoid carcinomas. Lung Cancer. https://doi.org/10.1016/j.lungcan.2018.06.001

    Article  PubMed  Google Scholar 

  77. Song Z, Xu C, He Y, Li F, Wang W, Zhu Y, Gao Y, Ji M, Chen M, Lai J, Cheng W (2020) Simultaneous detection of gene fusions and base mutations in cancer tissue biopsies by sequencing dual nucleic acid templates in unified reaction. Clin Chem 66(1):178–187

    Article  PubMed  Google Scholar 

  78. Wei J, Rybczynska AA, Meng P, Terpstra M, Saber A, Sietzema J, Timens W, Schuuring E, Hiltermann TJ, Groen HJ, van der Wekken AJ (2020) An all-in-one transcriptome-based assay to identify therapy-guiding genomic aberrations in nonsmall cell lung cancer patients. Cancers 12(10):2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang K, Sung I, Fang W et al (2018) Correlation between HGF/c-Met and Notch1 signaling pathways in human gastric cancer cells. Oncol Rep 40:294–302

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Funakoshi Y, Mukohara T, Ekyalongo RC, Tomioka H, Kataoka Y, Shimono Y, Chayahara N, Toyoda M, Kiyota N, Fujiwara Y, Minami H (2013) Regulation of MET kinase inhibitor resistance by copy number of MET in gastric carcinoma cells. Oncol Res 21(6):287–293

    Article  PubMed  Google Scholar 

  81. Funakoshi Y, Mukohara T, Tomioka H, Ekyalongo RC, Kataoka Y, Inui Y, Kawamori Y, Toyoda M, Kiyota N, Fujiwara Y, Minami H (2013) Excessive MET signaling causes resistance and addiction to MET inhibitors in the MKN45 gastric cancer cell line. Investig New Drugs 31:1158–1168

    Article  CAS  Google Scholar 

  82. Li A, Yang JJ, Zhang XC, Zhang Z, Su J, Gou LY, Bai Y, Zhou Q, Yang Z, Han-Zhang H, Zhong WZ (2017) Acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non–small cell lung cancer. Clin Cancer Res 23(16):4929–4937

    Article  CAS  PubMed  Google Scholar 

  83. Deng N, Goh LK, Wang H et al (2012) A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61:673–684

    Article  CAS  PubMed  Google Scholar 

  84. Ko J, Jung J, Kim ST, Hong JY, Park S, Park JO, Park YS, Lim HY, Ahn S, Kim KM, Kang WK (2022) MET gene alterations predict poor survival following chemotherapy in patients with advanced cancer. Pathol Oncol Res. 1610697. https://doi.org/10.3389/pore.2022.1610697

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang M, Mandal E, Liu FX, O’Hara Jr RM, Lesher B, Sanborn RE (2024) Non-small cell lung cancer with MET amplification: review of epidemiology, associated disease characteristics, testing procedures, burden, and treatments. Front Oncol 13:1241402

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhu C, Xu J, Li M, Zhao G, Cao H (2015) Heterogeneity of c-Met expression in Chinese gastric cancer patients. Hum Pathol 46(12):1901–1907

    Article  CAS  PubMed  Google Scholar 

  87. Bahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, Palakurthi S, Choi J, Ivanova EV, Leonardi GC, Ulrich BC (2018) Amplification of wild-type KRAS imparts resistance to Crizotinib in MET exon 14 mutant non–small cell lung cancer. Clin Cancer Res 24(23):5963–5976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jin W, Shan B, Liu H, Zhou S, Li W, Pan J, Lin L, Hu D, Pan Y (2019) Acquired mechanism of Crizotinib resistance in NSCLC with MET exon 14 skipping. J Thorac Oncol 14(7):e137–e139

    Article  PubMed  Google Scholar 

  89. Harbinski F, Craig VJ, Sanghavi S, Jeffery D, Liu L, Sheppard KA, Wagner S, Stamm C, Buness A, Chatenay-Rivauday C, Yao Y (2012) Rescue screens with secreted proteins reveal compensatory potential of receptor tyrosine kinases in driving cancer growth. Cancer Discov 2(10):948–959

    Article  CAS  PubMed  Google Scholar 

  90. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA (2012) Tumor micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487(7408):505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marsh T, Pietras K, McAllister SS (2013) Fibroblasts as architects of cancer pathogenesis. Biochimica et biophysica acta (BBA)-Molecular basis of disease 1832(7):1070–1078

    Article  CAS  PubMed  Google Scholar 

  93. Ahn SY, Kim J, Kim MA, Choi J, Kim WH (2017) Increased HGF expression induces resistance to c-MET tyrosine kinase inhibitors in gastric cancer. Anticancer Res 37(3):1127–1138

    Article  CAS  PubMed  Google Scholar 

  94. Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, Wang L, Huang S, Quan M, Xie K (2016) HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene 35(36):4708–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernández-Pérez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, Medico E (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28(6):848–865

    Article  CAS  PubMed  Google Scholar 

  96. Mekki MS, Mougel A, Vinchent A, Paquet C, Copin MC, Leroy C, Kherrouche Z, Bonte JP, Melnyk O, Vicogne J, Tulasne D (2018) Hypoxia leads to decreased autophosphorylation of the MET receptor but promotes its resistance to tyrosine kinase inhibitors. Oncotarget 9(43):27039

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sun X, Li CW, Wang WJ, Chen MK, Li H, Lai YJ, Hsu JL, Koller PB, Chan LC, Lee PC, Cheng FJ (2020) Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma. Am J Cancer Res 10(2):564

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yi M, Zheng X, Niu M et al (2022) Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 21:28. https://doi.org/10.1186/s12943-021-01489-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin X, Peng Z, Wang X et al (2019) Targeting autophagy potentiates antitumor activity of Met-TKIs against Met-amplified gastric cancer. Cell Death Dis 10:139. https://doi.org/10.1038/s41419-019-1314-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao S, Li N, Zhang X, Chen J, Ko BC, Zhao Y (2023) An autophagy-inducing stapled peptide promotes c-MET degradation and overrides adaptive resistance to Sorafenib in c-MET + hepatocellular carcinoma. Biochem Biophys Rep 33:101412

    CAS  PubMed  Google Scholar 

  101. Wang Y, Zhang H, Zhang Y, Li X, Hu X, Wang X (2020) Decorin promotes apoptosis and autophagy via suppressing c-Met in HTR-8 trophoblasts. Reproduction 159(6):669–677

    Article  CAS  PubMed  Google Scholar 

  102. Wang R, Deng Z, Zhu Z, Wang J, Yang X, Xu M, Wang X, Tang Q, Zhou Q, Wan X, Wu W (2023) Kaempferol promotes non-small cell lung cancer cell autophagy via restricting Met pathway. Phytomedicine 121:155090

    Article  CAS  PubMed  Google Scholar 

  103. Schroeder RD, Choi W, Hong DS, McConkey DJ (2017) Autophagy is required for crizotinib-induced apoptosis in MET-amplified gastric cancer cells. Oncotarget 8(31):51675

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu Y, Liu JH, Chai K, Tashiro SI, Onodera S, Ikejima T (2013) Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. J Pharm Pharmacol 65(11):1622–1642

    Article  CAS  PubMed  Google Scholar 

  105. Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W (2024) Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 12(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mahrous M, Jebriel AO, Allehebi A, Shafik A, El Karak F, Venturini F, Alhusaini H, Meergans M, Sendur MA, Ouda M, Al-Nassar M (2023) Consensus recommendations for the Diagnosis, biomarker Testing, and clinical management of advanced or metastatic Non-small cell lung cancer with Mesenchymal-Epithelial transition exon 14 skipping mutations in the middle East, Africa, and Russia. Cureus 15(7):e41992.

  107. Simard MA, Cabrera-Galvez C, Viteri S, Geist F, Reischmann N, Zühlsdorf M, Karachaliou N (2024) Spatial profiling of METex14-altered NSCLC under Tepotinib treatment: shifting the immunosuppressive landscape. Neoplasia 57:101063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang C, Li J, Chen J, Wang Z, Zhu G, Song L, Wu J, Li C, Qiu R, Chen X, Zhang L (2025) Multi-omics analyses reveal biological and clinical insights in recurrent stage I non-small cell lung cancer. Nat Commun 16(1):1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Silva VR, Neves SP, Santos LD, Dias RB, Bezerra DP (2020) Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers 12(11):3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang J, Wang S, Sun J, Qiu L (2021) Expression of c-MET, EGFR and HER-2 in gastric adenocarcinoma tissue and its relationship with clinicopathological characteristics. Am J Transl Res 13(9):10856

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Naguib EM, Ismail EF, Badran DI et al (2024) Double trouble: how c-MET and HER2 fuel bladder cancer progression. Egypt J Med Hum Genet 25:147. https://doi.org/10.1186/s43042-024-00618-y

    Article  Google Scholar 

  112. Bhardwaj V, Zhan Y, Cortez MA, Ang KK, Molkentine D, Munshi A, Raju U, Komaki R, Heymach JV, Welsh J (2012) C-Met inhibitor MK-8003 radiosensitizes c-Met–expressing non–small-cell lung cancer cells with radiation-induced c-Met–expression. J Thorac Oncol 7(8):1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Okuda T, Tasaki T, Nakata S, Yamashita K, Yoshioka H, Izumoto S, Kato A, Fujita M (2017) Efficacy of combination therapy with MET and VEGF inhibitors for MET-overexpressing glioblastoma. Anticancer Res 37(7):3871–3876

    CAS  PubMed  Google Scholar 

  114. Jo EB, Lee YS, Lee H, Park JB, Park H, Choi YL, Hong D, Kim SJ (2019) Combination therapy with c-met inhibitor and TRAIL enhances apoptosis in dedifferentiated liposarcoma patient-derived cells. BMC Cancer 19:1–2

    Article  Google Scholar 

  115. Huang S, Long Y, Gao Y, Lin W, Wang L, Jiang J, Yuan X, Chen Y, Zhang P, Chu Q (2024) Combined inhibition of MET and VEGF enhances therapeutic efficacy of EGFR TKIs in EGFR-mutant non-small cell lung cancer with concomitant aberrant MET activation. Exp Hematol Oncol 13(1):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Puccini A, Marín-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, Loupakis F, Battaglin F (2019) Safety and tolerability of c-MET inhibitors in cancer. Drug Saf 42:211–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Catenacci DV, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, Tjulandin S, Gotovkin E, Karaszewska B, Bondarenko I, Tejani MA (2017) Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18(11):1467–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F (2024) Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: a review. World J Gastrointest Oncol 16(8):3397

    Article  PubMed  PubMed Central  Google Scholar 

  119. Liao H, Tian T, Sheng Y, Peng Z, Li Z, Wang J, Li Y, Zhang C, Gao J (2021) The significance of MET expression and strategies of targeting MET treatment in advanced gastric cancer. Front Oncol 11:719217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, Huang A, Yang NY, Nishimura M, Greve J, Santell L (2013) Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A 110(32):E2987-96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wakelee H, Zvirbule Z, De Braud F, Kingsley CD, Mekhail T, Lowe T, Schütte W, Lena H, Lawler W, Braiteh F, Cosgriff T (2017) Efficacy and safety of onartuzumab in combination with first-line bevacizumab-or pemetrexed-based chemotherapy regimens in advanced non-squamous non–small-cell lung cancer. Clin Lung Cancer 18(1):50–59

    Article  CAS  PubMed  Google Scholar 

  122. DiCara DM, Chirgadze DY, Pope AR, Karatt-Vellatt A, Winter A, Slavny P, Van Den Heuvel J, Parthiban K, Holland J, Packman LC, Mavria G (2017) Characterization and structural determination of a new anti-MET function-blocking antibody with binding epitope distinct from the ligand binding domain. Sci Rep 7(1):9000

    Article  PubMed  PubMed Central  Google Scholar 

  123. Diéras V, Campone M, Yardley DA, Romieu G, Valero V, Isakoff SJ, Koeppen H, Wilson TR, Xiao Y, Shames DS, Mocci S (2015) Randomized, phase II, placebo-controlled trial of onartuzumab and/or bevacizumab in combination with weekly paclitaxel in patients with metastatic triple-negative breast cancer. Ann Oncol 26(9):1904–1910

    Article  PubMed  Google Scholar 

  124. Liu Y, Yang Y, Ye YC, Shi QF, Chai K, Tashiro SI, Onodera S, Ikejima T (2012) Activation of ERK–p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J Pharmacol Sci 118(4):423–432

    Article  CAS  PubMed  Google Scholar 

  125. Jia J, Moyer A, Lowe M, Bolch E, Kortmansky J, Cho M, Lenz HJ, Kalyan A, Niedzwiecki D, Strickler JH (2025) A phase 2 study of Savolitinib in patients with MET amplified metastatic colorectal cancer. J Gastrointest Cancer 56(1):1–7

    Article  Google Scholar 

  126. Eng C, Bessudo A, Hart LL, Severtsev A, Gladkov O, Müller L, Kopp MV, Vladimirov V, Langdon R, Kotiv B, Barni S (2016) A randomized, placebo-controlled, phase 1/2 study of Tivantinib (ARQ 197) in combination with Irinotecan and cetuximab in patients with metastatic colorectal cancer with wild‐type KRAS who have received first‐line systemic therapy. Int J Cancer 139(1):177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. ClinicalTrials.gov Lung-MAP trial: Capmatinib, Osimertinib, and Ramucirumab for NSCLC (NCT05642572). U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT05642572

  128. Combining targeted drugs for advanced non-small cell lung cancer with EGFR mutations and MET amplification. Available from: https://www.swog.org/patients/trials-open-patients/combining-targeted-drugs-advanced-non-small-cell-lung-cancer-has-egfr

  129. UAMS Cancer Institute NCT06031688: Expanded Lung-MAP Trial Investigating Tepotinib with or Without Ramucirumab in Advanced NSCLC. Available from: https://cancer.uams.edu/kb/nct06031688/

  130. Memorial Sloan Kettering Cancer Center Clinical Trial 24 – 016: Investigating Targeted Therapies in Cancer Treatment. Available from: https://www.mskcc.org/cancer-care/clinical-trials/24-016

  131. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, Van Voorthuysen M, Somwar R, Smith RS, Montecalvo J, Plodkowski A, Ginsberg MS, Riely GJ, Rudin CM, Ladanyi M, Kris MG (2016) Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol 17(12):1653–1660 Epub 2016 Nov 4. PMID: 27825636; PMCID: PMC5143197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. MyCancerGenome, NCT01639508 : Clinical trial investigating targeted therapies in cancer. Available from: https://www.mycancergenome.org/content/clinical_trials/NCT01639508/

  133. ClinicalTrials.gov NCT03175224: APL-101 in MET-Altered Tumors. U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/study/NCT03175224

  134. National Cancer Institute NCI-2023-04100: Amivantamab in Combination with Tyrosine Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer. Available from: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2023-04100

  135. National Cancer Institute NCI-2023-08689: Clinical trial investigating C-MET inhibitors in cancer treatment. Available from: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2023-08689loc=0q=c-met%20inhibitorsrl=1

  136. Cho BC et al (2020) 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Ann Oncol 31(Suppl 4):S813

    Article  Google Scholar 

Download references

Acknowledgements

Namy George, gratefully acknowledges School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India, for academic guidance during her doctoral studies.The authors would like to acknowledge the College of Pharmacy, National University of Science and Technology, Muscat, Oman, for providing the necessary research facilities. This work was supported by The Research Council (TRC) of Oman under the Graduate Research Grant (GRG) program, Grant ID-BFP/GRG/CBS/23/071.

Funding

This work was supported by the College of Pharmacy, National University of Science and Technology, Muscat, Oman. Author Bushara Al Sabahi has received research support from The Research Council (TRC), Oman under the Graduate Research Grant (GRG) program (Grant number BFP/GRG/CBS/23/071).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study “Targeting c-Met Signaling in Cancer: From MET Alteration to Clinical Advances and Future Prospects”. Material preparation, data collection and analysis were performed by Namy George. The first draft of the manuscript was written by Namy George and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Namy George or Shalini Bajaj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This review article is based exclusively on previously published literature and does not involve any studies with human participants or animals conducted by the authors. Hence, ethical approval was not required.

Consent to publish

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, N., Bajaj, S., Al Sabahi, B. et al. Targeting mesenchymal-epithelial transition factor signaling in cancer: from genetic alterations to clinical advances and future prospects. Mol Biol Rep 52, 1041 (2025). https://doi.org/10.1007/s11033-025-11127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-025-11127-5

Keywords