Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Tribocorrosion and Cytotoxicity Performance of Nano-Zinc Oxide-Coated Magnesium Nanocomposites in Simulated Body Fluid Environment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study explores the tribocorrosion, cytotoxicity, and wettability characteristics of nano-ZnO-coated and uncoated Mg-Zn-0.2Gd-nZnO (n = 1, 1.5, 2 wt.% of ZnO) nanocomposites in the presence of simulated body fluids (SBF). The required alloys and nanocomposites were developed using stir ultrasonication followed by squeeze casting. The fabricated samples were T5 heat-treated and then spin-coated with ZnO nanoparticles. Results of the tribocorrosion test highlight that the coated samples displayed a low corrosion current density (Icorr) of 1.94 × 10 − 5 A cm−2, a high corrosion potential (Ecorr) of − 0.818 V, and a low degradation rate of 0.375 mm/yr. The formation of MgZn3, MgZn precipitates, and a strong nano-ZnO coating effectively reduces the oxidation reaction during tribocorrosion. The ZnO nano-oxide layer, which was formed during coating, acts as a barrier against tribocorrosion. The cytotoxicity performance was analyzed by a mouse fibroblast L929 cell line, which demonstrates enhanced cell viability during in vitro tests. A low contact angle of 62.1° in the wettability test indicates that the coating of nano-ZnO improved the surface's hydrophilicity. Due to its better bioactivity and improved degradation resistance, coated Mg nanocomposite samples have the prospect of being used in bone fixation plate applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16

References

  1. G. Wang, S. Wang, X. Yang, D. Wen, and Y. Guo, Microstructure, Mechanical Properties and Fretting Corrosion Wear Behavior of Biomedical ZK60 Mg Alloy Treated by Laser Shock Peening, Trans. Nonferrous Met. Soc. China, 2023, 33(6), p 1715–1728. https://doi.org/10.1016/S1003-6326(23)66216-8

    Article  CAS  Google Scholar 

  2. M. Fouladi and A.A. Amadeh, Effect of Magnesium Carbonate and Phosphoric acid Concentration on Microstructure and Corrosion Behavior of Magnesium Phosphate Coating, J. Mater. Eng. Perform., 2024, 33(18), p 9745–9760. https://doi.org/10.1007/s11665-023-08604-y

    Article  CAS  Google Scholar 

  3. S. Liu, G. Li, Y. Qi, Z. Peng, Y. Ye, and J. Liang, Corrosion and Tribocorrosion Resistance of MAO-Based Composite Coating on AZ31 Magnesium Alloy, J. Magnes. Alloy., 2022, 10(12), p 3406–3417. https://doi.org/10.1016/j.jma.2021.04.004

    Article  CAS  Google Scholar 

  4. M.C.L. de Oliveira, R.M.P. da Silva, R.M. Souto, and R.A. Antunes, A Review on the Synergism Between Corrosion and Fatigue of Magnesium Alloys: Mechanisms and Processes on the Micro-Scale, J. Magnes. Alloy., 2024, 12(8), p 3062–3093. https://doi.org/10.1016/j.jma.2024.07.030

    Article  CAS  Google Scholar 

  5. J.T.D. de Oliveira, F. Okamoto, M. Masoumi, R.A. Antunes, and M.C.L. de Oliveira, Sealing of Anodized AZ31B Magnesium Alloy in Lanthanum-Based Solution: Interplay Between Sealing Parameters, Surface Chemistry, and Corrosion Resistance, J. Mater. Eng. Perform., 2024, 33(16), p 8156–8164. https://doi.org/10.1007/s11665-023-08521-0

    Article  CAS  Google Scholar 

  6. Y. Zhang, S. Lu, D. Li, H. Duan, C. Duan, J. Zhang, and S. Liu, Inhibition Mechanism of air Nanobubbles on Brass Corrosion in Circulating Cooling Water Systems, Chin. J. Chem. Eng., 2023, 62, p 168–181. https://doi.org/10.1016/j.cjche.2023.03.014

    Article  CAS  Google Scholar 

  7. D.M. Rahmani and F. Fereshteh-Saniee, Effects of the Radial-Axial Ring Rolling Process on the Mechanical Properties and Microstructure of Centrifugally Cast AM60 Magnesium Rings, J. Mater. Eng. Perform., 2024, 33(16), p 8480–8496. https://doi.org/10.1007/s11665-023-08505-0

    Article  CAS  Google Scholar 

  8. R. VairaVignesh, R. Padmanaban, and M. Govindaraju, Study on the Corrosion and Wear Characteristics of Magnesium Alloy AZ91D in Simulated Body Fluids, Bull. Mater. Sci., 2020, 43(1), 8. https://doi.org/10.1007/s12034-019-1973-3

    Article  CAS  Google Scholar 

  9. M. Peron, J. Torgersen, and F. Berto, Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and its Interplay with Mechanical Failure, Metals, 2017, 7(7), 252. https://doi.org/10.3390/met7070252

    Article  CAS  Google Scholar 

  10. Z. Wu, S.J. Wang, Y. Zhang, Y.L. Liu, L.J. Huang, and R.Z. Wu, Effect of Laser Power on Processing Quality of AZ31B Magnesium Alloy, J. Mater. Eng. Perform., 2023, 32(24), p 11457–11465. https://doi.org/10.1007/s11665-023-07939-w

    Article  CAS  Google Scholar 

  11. P. Sekar and S.K. Panigrahi, Understanding the Corrosion and Bio-Corrosion Behaviour of Magnesium Composites – a Critical Review, J. Magnes. Alloy., 2024, 12(3), p 890–939. https://doi.org/10.1016/j.jma.2024.02.014

    Article  CAS  Google Scholar 

  12. A. Jahangiri, S.P.H. Marashi, M. Mohammadaliha, and V. Ashofte, The Effect of Pressure and Pouring Temperature on the Porosity, Microstructure, Hardness and Yield Stress of AA2024 Aluminum Alloy During the Squeeze Casting Process, J. Mater. Process. Technol., 2017, 245, p 1–6. https://doi.org/10.1016/j.jmatprotec.2017.02.005

    Article  CAS  Google Scholar 

  13. D.K. PKas and D.G. Solomon, Investigations on Microstructure and Mechanical Properties on LM30-B4C Nanocomposites Fabricated through Ultrasonic-Squeeze Assisted Stir-Casting, Mater. Today Commun., 2023, 37, p 106978. https://doi.org/10.1016/j.mtcomm.2023.106978

    Article  CAS  Google Scholar 

  14. S. Sankaranarayanan, U.P. Nayak, R.K. Sabat, S. Suwas, A. Almajid, and M. Gupta, Nano-ZnO Particle addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response, J. Alloys Compd., 2014, 615, p 211–219. https://doi.org/10.1016/j.jallcom.2014.06.163

    Article  CAS  Google Scholar 

  15. H.M. Fu, D. Qiu, M.X. Zhang, H. Wang, P.M. Kelly, and J.A. Taylor, The Development of a New Grain Refiner for Magnesium Alloys Using the edge-to-Edge Model, J. Alloys Compd., 2008, 456(1–2), p 390–394. https://doi.org/10.1016/j.jallcom.2007.02.076

    Article  CAS  Google Scholar 

  16. V. Verma, S. Singh, and K. Pal, Exploring the Potential of Mg-Zn-Mn-Ca/ZnO Composites as a Biodegradable Alternative for Fracture Fixation: Microstructural, Mechanical, and In-Vitro Biocompatibility Analysis, Compos. Struct., 2023, 323, 117431. https://doi.org/10.1016/j.compstruct.2023.117431

    Article  CAS  Google Scholar 

  17. Y. Chen, S. Tekumalla, Y.B. Guo, and M. Gupta, Introducing Mg-4Zn-3Gd-1Ca/ZnO Nanocomposite with Compressive Strengths Matching/Exceeding that of Mild Steel, Sci. Rep., 2016, 6(1), 32395. https://doi.org/10.1038/srep32395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. Tanweer, N.F. Rana, I. Saleem, I. Shafique, S.M. Alshahrani, H.A. Almukhlifi, A.S. Alotaibi, S.A. Alshareef and F. Menaa, Dental Composites with Magnesium Doped Zinc Oxide Nanoparticles Prevent Secondary Caries in the Alloxan-Induced Diabetic Model, Int. J. Mol. Sci., 2022, 23(24), 15926. https://doi.org/10.3390/ijms232415926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. N. Jiang, L. Chen, L. Meng, C. Fang, H. Hao, and X. Zhang, Effect of Neodymium, Gadolinium Addition on Microstructure and Mechanical Properties of AZ80 magnesium alloy, J. Rare Earths, 2016, 34(6), p 632–637. https://doi.org/10.1016/S1002-0721(16)60072-8

    Article  CAS  Google Scholar 

  20. B.N. Guniputi and S.M. Murigendrappa, Influence of Gd on the Microstructure, Mechanical and Shape Memory Properties of Cu-Al-Be Polycrystalline Shape Memory Alloy, Mater. Sci. Eng. A, 2018, 737, p 245–252. https://doi.org/10.1016/J.MSEA.2018.09.064

    Article  CAS  Google Scholar 

  21. L. Gao, R.S. Chen, and E.H. Han, Effects of Rare-Earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys, J. Alloys Compd., 2009, 481(1–2), p 379–384. https://doi.org/10.1016/j.jallcom.2009.02.131

    Article  CAS  Google Scholar 

  22. C.-K. Fang, C.C. Huang, and T.H. Chuang, Synergistic Effects of Wear and Corrosion for Al2O3 Particulate-Reinforced 6061 Aluminum Matrix Composites, Metall. Mater. Trans. A, 1999, 30(3), p 643–651. https://doi.org/10.1007/s11661-999-0056-2

    Article  Google Scholar 

  23. R. Jamaati, M.R. Toroghinejad, J.A. Szpunar, and D. Li, Tribocorrosion Behavior of Aluminum/Alumina Composite Manufactured by Anodizing and ARB Processes, J. Mater. Eng. Perform., 2011, 20(9), p 1600–1605. https://doi.org/10.1007/s11665-011-9835-1

    Article  CAS  Google Scholar 

  24. A. Gnanavelbabu, E. Vinothkumar, N.S. Ross, M.K. Gupta, and M. Jamil, Tribo-Corrosive Wear and Mechanical Properties of Nanoparticles Reinforced Mg-AZ91D Composites, Tribol. Int., 2023, 178, 108054. https://doi.org/10.1016/j.triboint.2022.108054

    Article  CAS  Google Scholar 

  25. R. Zou, L. Bi, Y. Huang, Y. Wang, Y. Wang, L. Li, J. Liu, L. Feng, X. Jiang, and B. Deng, A Biocompatible Silicon Nitride Dental Implant Material Prepared by Digital Light Processing Technology, J. Mech. Behav. Biomed. Mater., 2023, 141, 105756. https://doi.org/10.1016/j.jmbbm.2023.105756

    Article  CAS  PubMed  Google Scholar 

  26. K.V. Nadaraia, D.V. Mashtalyar, M.A. Piatkova, A.I. Pleshkova, I.M. Imshinetskiy, M.S. Gerasimenko, E.A. Belov, V.V. Kumeiko, D.N. Kozyrev, K.A. Fomenko, V.V. Mostovaya, B.R. Torpanov, A.R. Biktimirov, I.S. Osmushko, S.L. Sinebryukhov, and S.V. Gnedenkov, Antibacterial HA-Coatings on Bioresorbable Mg Alloy, J. Magnes. Alloy., 2024, 12(5), p 1965–1985. https://doi.org/10.1016/j.jma.2024.05.006

    Article  CAS  Google Scholar 

  27. M. Prabakaran, S. Rajakannu, L.K. Adhimoolam, and M. Gupta, In Vitro Degradation, Haemolysis and Cytotoxicity Study of Mg-0.4Ce/ZnO2 Nanocomposites, IET Nanobiotechnol., 2021, 15(2), p 157–163. https://doi.org/10.1049/nbt2.12032

    Article  PubMed  PubMed Central  Google Scholar 

  28. D. Bian, J. Deng, N. Li, X. Chu, Y. Liu, W. Li, H. Cai, P. Xiu, Y. Zhang, Z. Guan, Y. Zheng, Y. Kou, B. Jiang, R. Chen,, and American Chemical Society, In Vitro And In Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and zinc for Orthopedic Implant Applications, ACS Appl. Mater. Interfaces, 2018, 10(5), p 4394–4408.

    Article  CAS  PubMed  Google Scholar 

  29. M. Mahalingam, P. Lakshmanan, G. Annamalai, and P. Krishnan, Role of Rare Earth Gadolinium and ZnO Nanoparticles on the Electrochemical Corrosion Behavior of Mg Nanocomposites Produced by Stir-Ultrasonication and Squeeze Casting, Int. J. Met., 2024, 18(4), p 3563–3579. https://doi.org/10.1007/s40962-024-01282-z

    Article  CAS  Google Scholar 

  30. Y. Sasikumar, M.M. Solomon, L.O. Olasunkanmi, and E.E. Ebenso, Effect of Surface Treatment on the Bioactivity and Electrochemical Behavior of Magnesium Alloys in Simulated Body Fluid, Mater. Corros., 2017, 68(7), p 776–790. https://doi.org/10.1002/maco.201609317

    Article  CAS  Google Scholar 

  31. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  32. L. Florento, R. Matias, E. Tuano, K. Santiago, F. Cruz, and A. Tuazon, Comparison of Cytotoxic Activity of Anticancer Drugs Against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach, Int. J. Biomed. Sci., 2012, 8(1), p 76–80. https://doi.org/10.59566/IJBS.2012.8076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Liang, L. Hu, and J. Hao, Improvement of Corrosion Properties Of Microarc Oxidation Coating on Magnesium alloy by Optimizing Current Density Parameters, Appl. Surf. Sci., 2007, 253(16), p 6939–6945. https://doi.org/10.1016/j.apsusc.2007.02.010

    Article  CAS  Google Scholar 

  34. C. Martini, L. Ceschini, F. Tarterini, J.M. Paillard, and J.A. Curran, PEO Layers Obtained From Mixed Aluminate-Phosphate Baths on Ti–6Al–4V: Dry Sliding Behaviour And Influence of a PTFE Topcoat, Wear, 2010, 269(11–12), p 747–756. https://doi.org/10.1016/j.wear.2010.07.011

    Article  CAS  Google Scholar 

  35. Z. Ur Rehman and D. Choi, Investigation of ZrO2 Nanoparticles Concentration and Processing Time Effect on the Localized PEO Coatings Formed on AZ91 Alloy, J. Magnes. Alloy., 2019, 7(4), p 555–565. https://doi.org/10.1016/j.jma.2019.10.001

    Article  CAS  Google Scholar 

  36. R. Ahmadi, N. Asadpourchallou, and B.K. Kaleji, In Vitro Study: Evaluation of Mechanical Behavior, Corrosion Resistance, Antibacterial Properties And Biocompatibility of HAp/TiO2/Ag Coating on Ti6Al4V/TiO2 Substrate, Surf. Interface Anal., 2021, 24, 101072. https://doi.org/10.1016/j.surfin.2021.101072

    Article  CAS  Google Scholar 

  37. R. Ahmadi and A. Afshar, In Vitro Study: Bond Strength, Electrochemical and Biocompatibility Evaluations of TiO2/Al2O3 Reinforced Hydroxyapatite sol-gel Coatings on 316L SS, Surf. Coat. Technol., 2021, 405, 126594. https://doi.org/10.1016/j.surfcoat.2020.126594

    Article  CAS  Google Scholar 

  38. N. Ghamari, R. Ahmadi, M.S. Sheikhzadeh, and A. Afshar, Development of PDMS/TiO2/Ag3PO4 Antibacterial Coating on 316L/PDMS Implants: Evaluation of Superhydrophobicity, Bio-Corrosion, Mechanical Behaviour, Surface Nanostructure and Chemistry, J. Mech. Behav. Biomed. Mater., 2024, 150, 106315. https://doi.org/10.1016/j.jmbbm.2023.106315

    Article  CAS  PubMed  Google Scholar 

  39. C.-Y. Li, X.-L. Fan, R.-C. Zeng, L.-Y. Cui, S.-Q. Li, F. Zhang, Q.-K. He, M.B. Kannan, H.-W. Jiang, D.-C. Chen, and S.-K. Guan, Corrosion Resistance of In-Situ Growth of Nano-Sized Mg(OH)2 on Micro-Arc Oxidized Magnesium Alloy AZ31—Influence of EDTA, J. Mater. Sci. Technol., 2019, 35(6), p 1088–1098. https://doi.org/10.1016/j.jmst.2019.01.006

    Article  CAS  Google Scholar 

  40. A. Sharma, V. Beura, D. Zhang, J. Darsell, S. Niverty, V. Prabhakaran, N. Overman, D.R. Herling, V. Joshi, and K. Solanki, Effect of Corrosion Behavior of Cast and Extruded ZK60 Magnesium Alloys Processed Via Friction Extrusion, J. Magnes. Alloy., 2024, 12(9), p 3553–3573. https://doi.org/10.1016/j.jma.2024.09.015

    Article  CAS  Google Scholar 

  41. Y. Cubides, D. Zhao, L. Nash, D. Yadav, K. Xie, I. Karaman, and H. Castaneda, Effects of Dynamic Recrystallization and Strain-Induced Dynamic Precipitation on the Corrosion Behavior Of Partially Recrystallized Mg–9Al–1Zn Alloys, J. Magnes. Alloy., 2020, 8(4), p 1016–1037. https://doi.org/10.1016/j.jma.2020.09.005

    Article  CAS  Google Scholar 

  42. X. Cao, Q. Jia, C. Xu, Z. Zhang, C. Ren, W. Yang, and J. Zhang, Research on Dynamic Corrosion Behavior and the Microstructure of Biomedical Mg–Y–Zn–Zr–Sr In Simulated Body Fluid Solution After Processing by Solution Treatment, Adv. Eng. Mater., 2020 https://doi.org/10.1002/adem.201901146

    Article  Google Scholar 

  43. H. Gerengi, M. Cabrini, M.M. Solomon, and E. Kaya, Understanding the Corrosion Behavior of the AZ91D Alloy in Simulated Body Fluid Through the Use of Dynamic EIS, ACS Omega, 2022, 7(14), p 11929–11938. https://doi.org/10.1021/acsomega.2c00066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. V. Chandran, C. Kunjan, V. Veerapandian, and R. Kannan, Mechanical, Corrosion and Biological Behavior of Centrifugal Casting Processed Mg–2Zn–1Mn Alloy Reinforced with β Tricalciumphosphate (ΒTCP) for Orthopaedic Applications, J. Mech. Behav. Biomed. Mater., 2023, 144, 105983. https://doi.org/10.1016/j.jmbbm.2023.105983

    Article  CAS  PubMed  Google Scholar 

  45. W. Akram, R. Khan, M. Petrů, M. Amjad, K. Ahmad, M. Yasir, S. Ahmad, and S.S. Rahimian Koloor, Hydroxyapatite Coating for Control Degradation and Parametric Optimization of Pure Magnesium: An Electrophoretic Deposition Technique for Biodegradable Implants, J. Mater. Res. Technol., 2023, 26, p 2587–2600. https://doi.org/10.1016/j.jmrt.2023.08.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poovazhagan Lakshmanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, M., Lakshmanan, P., Annamalai, G. et al. Tribocorrosion and Cytotoxicity Performance of Nano-Zinc Oxide-Coated Magnesium Nanocomposites in Simulated Body Fluid Environment. J. of Materi Eng and Perform (2025). https://doi.org/10.1007/s11665-025-12429-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-025-12429-2

Keywords