Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Rotating effects on the Hall conductivity in a quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyze the quantized Hall conductivity of a 2D system simultaneously exposed to rotation, a uniform magnetic field, and an Aharonov–Bohm flux. Rotation shifts and narrows the Hall plateaus by modifying the energy spectrum, while the flux induces \(\sigma _{\text {Hall}}\) oscillations whose amplitude grows at low cyclotron frequency. The combined action of the angular velocity \(\Omega\), the confinement frequency \(\omega _0\), and the cyclotron frequency \(\omega _c\) governs both the plateau structure and the oscillation period. These results show that rotation enhances quantum interference effects, offering clear guidelines for experiments on rotating quantum Hall devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Code availability

This is a theoretical work, and no new code/software has been generated. The numerical computation has been performed using Python.

References

  1. T. Nowozin, Self-organized Quantum Dots for Memories: Electronic Properties and Carrier Dynamics. Springer. (2013)

  2. T. Chakraborty, P. Pietiläinen, Electron-electron interaction and the persistent current in a quantum ring. Phys. Rev. B 50(12), 8460–8468 (1994). https://doi.org/10.1103/PhysRevB.50.8460

    Article  ADS  Google Scholar 

  3. D.V. Bulaev, V.A. Geyler, V.A. Margulis, Effect of surface curvature on magnetic moment and persistent currents in two-dimensional quantum rings and dots. Phys. Rev. B 69, 195313 (2004). https://doi.org/10.1103/PhysRevB.69.195313

    Article  ADS  Google Scholar 

  4. L.F.C. Pereira, E.O. Silva, Modification of landau levels in a 2d ring due to rotation effects and edge states. Ann. Phys. 535(6), 2200371 (2023). https://doi.org/10.1002/andp.202200371

    Article  MATH  Google Scholar 

  5. C. González-Santander, F. Domínguez-Adame, R.A. Römer, Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring. Phys. Rev. B 84, 235103 (2011). https://doi.org/10.1103/PhysRevB.84.235103

    Article  ADS  Google Scholar 

  6. R.V.H. Hahn, C.A. Duque, M.E. Mora-Ramos, Electron-impurity states in concentric double quantum rings and related optical properties. Phys. Lett. A 534, 130226 (2025). https://doi.org/10.1016/j.physleta.2025.130226

    Article  Google Scholar 

  7. K. Bao, Y. Zheng, Electronic transport through a quantum-dot ring. Phys. Rev. B 73, 045306 (2006). https://doi.org/10.1103/PhysRevB.73.045306

    Article  ADS  Google Scholar 

  8. Z. He, X. Zhao, K. Chen, J. Bai, Y. Guo, Analysis of a multiple-quantum-dots embedded ring structure for potential optically-controlled quantum switch or spin filter. Sci. Rep. 10(1), 16280 (2020). https://doi.org/10.1038/s41598-020-73275-x

    Article  Google Scholar 

  9. M. Shirsefat, M. Servatkhah, S. Hosseini, An analytical study of the magnetic properties of the quantum dot/ring system: rashba, magnetic field, and electron-electron effects. Commun. Theor. Phys. 77(4), 045106 (2024). https://doi.org/10.1088/1572-9494/ad7c37

    Article  ADS  MathSciNet  Google Scholar 

  10. L.F.C. Pereira, F.M. Andrade, C. Filgueiras, E.O. Silva, Modifications of electron states, magnetization, and persistent current in a quantum dot by controlled curvature. Ann. Phys. 531(11), 1900254 (2019). https://doi.org/10.1002/andp.201900254

    Article  MathSciNet  MATH  Google Scholar 

  11. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Pergamon Press. (1977). https://doi.org/10.1016/C2013-0-06593-4

  12. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Artificial gauge fields for ultracold atoms in optical lattices. Rev. Modern Phys. 83, 1523 (2011). https://doi.org/10.1103/RevModPhys.83.1523

    Article  ADS  Google Scholar 

  13. A.L. Fetter, Rotating trapped Bose-Einstein condensates. Rev. Modern Phys. 81, 647 (2009). https://doi.org/10.1103/RevModPhys.81.647

    Article  ADS  Google Scholar 

  14. N.R. Cooper, Rotating quantum hall states. Adv. Phys. 57, 539 (2008). https://doi.org/10.1080/00018730802564122

    Article  ADS  Google Scholar 

  15. K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters 45, 494 (1980). https://doi.org/10.1103/PhysRevLett.45.494

  16. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. Nijs, Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982). https://doi.org/10.1103/PhysRevLett.49.405

    Article  ADS  Google Scholar 

  17. D.F. Lima, S. Azevedo, F. Pereira, L.F.C. Filgueiras, C. Silva, E.O, Optical and electronic properties of a two-dimensional quantum ring under rotating effects. Annals of Physics 459, 169547 (2023). https://doi.org/10.1016/j.aop.2023.169547

  18. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959). https://doi.org/10.1103/PhysRev.115.485

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Büttiker, Y. Imry, R. Landauer, Aharonov-bohm effect in normal metal quantum coherence and transport. Physical Review Letters 50, 1983 (1983) https://doi.org/10.1103/PhysRevLett.50.1983

  20. L.F.C. Pereira, M.M. Cunha, E.O. Silva, 1d quantum ring: a toy model describing noninertial effects on electronic states, persistent current and magnetization. Few-Body Syst. 63(3), 58 (2022). https://doi.org/10.1007/s00601-022-01761-1

    Article  ADS  Google Scholar 

  21. L.F.C. Pereira, F.M. Andrade, C. Filgueiras, E.O. Silva, Study of electronic properties, magnetization and persistent currents in a mesoscopic ring by controlled curvature. Physica E Low Dim. Syst. Nanostruct. 132, 114760 (2021). https://doi.org/10.1016/j.physe.2021.114760

    Article  Google Scholar 

  22. Y. Meir, O. Entin-Wohlman, Y. Gefen, Magnetic-field and spin-orbit interaction in restricted geometries: solvable models. Phys. Rev. B 42, 8351–8360 (1990). https://doi.org/10.1103/PhysRevB.42.8351

    Article  ADS  Google Scholar 

  23. R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems. Springer Tracts in Modern Physics 191, 1 (2003). https://doi.org/10.1007/b13586

    Article  Google Scholar 

  24. H. Zhu, C.-F. Liu, D.-S. Wang, S.-G. Yin, L. Zhuang, W.-M. Liu, Spin-orbit coupling controlling the topological vortical phase transition in spin-2 rotating Bose-Einstein condensates. Phys. Rev. A 104, 053325 (2021). https://doi.org/10.1103/PhysRevA.104.053325

    Article  ADS  Google Scholar 

  25. L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner, W.T.M. Irvine, Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. 112(47), 14495–14500 (2015). https://doi.org/10.1073/pnas.1507413112

    Article  ADS  Google Scholar 

  26. M. Hamada, S. Murakami, Conversion between electron spin and microscopic atomic rotation. Phys. Rev. Res. 2, 023275 (2020). https://doi.org/10.1103/PhysRevResearch.2.023275

    Article  Google Scholar 

  27. N. Regnault, T. Jolicoeur, Fractional quantum hall effect in rotating Bose-Einstein condensates. Phys. Rev. Lett. 91, 030402 (2003). https://doi.org/10.1103/PhysRevLett.91.030402

    Article  ADS  Google Scholar 

  28. L. Dantas, C. Furtado, A.L. Silva Netto, Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 379(1), 11–15 (2015). https://doi.org/10.1016/j.physleta.2014.10.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. G. Rizzi, M.L. Ruggiero. (eds.): Relativistic Physics in Rotating Reference Frames. Springer. (2004)

  30. W. Tan, J. Inkson, Electron states in a two-dimensional ring-an exactly soluble model. Semicond. Sci. Technol. 11(11), 1635 (1996)

    Article  ADS  Google Scholar 

  31. C.M.O. Pereira, Azevedo, F.d.S., Pereira, L.F.C., Silva, E.O., Rotating effects on the photoionization cross-section of a 2d quantum ring. Communications in Theoretical Physics 76(10), 105701 (2024). https://doi.org/10.1088/1572-9494/ad597c

  32. N. Byers, C.N. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46–49 (1961). https://doi.org/10.1103/PhysRevLett.7.46

    Article  ADS  Google Scholar 

  33. A.G. Rojo, R. Merlin, Persistent magnetic moment of rotating mesoscopic rings and cylinders. Phys. Rev. B 54, 1877–1879 (1996). https://doi.org/10.1103/PhysRevB.54.1877

    Article  ADS  Google Scholar 

  34. J.E. Brandão, F. Moraes, M.M. Cunha, J.R.F. Lima, C. Filgueiras, Inertial-hall effect: the influence of rotation on the hall conductivity. Res. Phys. 5, 55–59 (2015). https://doi.org/10.1016/j.rinp.2015.02.003

    Article  Google Scholar 

  35. C. Filgueiras, J. Brandão, F. Moraes, Tuning the hall conductivity with rotation. Europhys. Lett. 110(2), 27003 (2015). https://doi.org/10.1209/0295-5075/110/27003

    Article  ADS  Google Scholar 

  36. F.M. Andrade, E.O. Silva, D. Assafrão, C. Filgueiras, Effects of quantum deformation on the integer quantum hall effect. Europhys. Lett. 116(3), 31002 (2016). https://doi.org/10.1209/0295-5075/116/31002

    Article  ADS  MATH  Google Scholar 

  37. D. Sidler, V. Rokaj, M. Ruggenthaler, A. Rubio, Class of distorted landau levels and hall phases in a two-dimensional electron gas subject to an inhomogeneous magnetic field. Phys. Rev. Res. 4, 043059 (2022). https://doi.org/10.1103/PhysRevResearch.4.043059

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies CAPES, CNPq and FAPEMA. E. O. Silva acknowledges CNPq Grant PQ 306308/2022-3, FAPEMA Grants APP-12256/22 and UNIVERSAL-06395/22. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Magno O. Pereira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, C.M.O., Pereira, L.F.C., Assafrão, D. et al. Rotating effects on the Hall conductivity in a quantum dot. Eur. Phys. J. Plus 140, 980 (2025). https://doi.org/10.1140/epjp/s13360-025-06925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-025-06925-6