Abstract
We analyze the quantized Hall conductivity of a 2D system simultaneously exposed to rotation, a uniform magnetic field, and an Aharonov–Bohm flux. Rotation shifts and narrows the Hall plateaus by modifying the energy spectrum, while the flux induces \(\sigma _{\text {Hall}}\) oscillations whose amplitude grows at low cyclotron frequency. The combined action of the angular velocity \(\Omega\), the confinement frequency \(\omega _0\), and the cyclotron frequency \(\omega _c\) governs both the plateau structure and the oscillation period. These results show that rotation enhances quantum interference effects, offering clear guidelines for experiments on rotating quantum Hall devices.
Similar content being viewed by others
Data availability
No data associated in the manuscript.
Code availability
This is a theoretical work, and no new code/software has been generated. The numerical computation has been performed using Python.
References
T. Nowozin, Self-organized Quantum Dots for Memories: Electronic Properties and Carrier Dynamics. Springer. (2013)
T. Chakraborty, P. Pietiläinen, Electron-electron interaction and the persistent current in a quantum ring. Phys. Rev. B 50(12), 8460–8468 (1994). https://doi.org/10.1103/PhysRevB.50.8460
D.V. Bulaev, V.A. Geyler, V.A. Margulis, Effect of surface curvature on magnetic moment and persistent currents in two-dimensional quantum rings and dots. Phys. Rev. B 69, 195313 (2004). https://doi.org/10.1103/PhysRevB.69.195313
L.F.C. Pereira, E.O. Silva, Modification of landau levels in a 2d ring due to rotation effects and edge states. Ann. Phys. 535(6), 2200371 (2023). https://doi.org/10.1002/andp.202200371
C. González-Santander, F. Domínguez-Adame, R.A. Römer, Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring. Phys. Rev. B 84, 235103 (2011). https://doi.org/10.1103/PhysRevB.84.235103
R.V.H. Hahn, C.A. Duque, M.E. Mora-Ramos, Electron-impurity states in concentric double quantum rings and related optical properties. Phys. Lett. A 534, 130226 (2025). https://doi.org/10.1016/j.physleta.2025.130226
K. Bao, Y. Zheng, Electronic transport through a quantum-dot ring. Phys. Rev. B 73, 045306 (2006). https://doi.org/10.1103/PhysRevB.73.045306
Z. He, X. Zhao, K. Chen, J. Bai, Y. Guo, Analysis of a multiple-quantum-dots embedded ring structure for potential optically-controlled quantum switch or spin filter. Sci. Rep. 10(1), 16280 (2020). https://doi.org/10.1038/s41598-020-73275-x
M. Shirsefat, M. Servatkhah, S. Hosseini, An analytical study of the magnetic properties of the quantum dot/ring system: rashba, magnetic field, and electron-electron effects. Commun. Theor. Phys. 77(4), 045106 (2024). https://doi.org/10.1088/1572-9494/ad7c37
L.F.C. Pereira, F.M. Andrade, C. Filgueiras, E.O. Silva, Modifications of electron states, magnetization, and persistent current in a quantum dot by controlled curvature. Ann. Phys. 531(11), 1900254 (2019). https://doi.org/10.1002/andp.201900254
L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Pergamon Press. (1977). https://doi.org/10.1016/C2013-0-06593-4
J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Artificial gauge fields for ultracold atoms in optical lattices. Rev. Modern Phys. 83, 1523 (2011). https://doi.org/10.1103/RevModPhys.83.1523
A.L. Fetter, Rotating trapped Bose-Einstein condensates. Rev. Modern Phys. 81, 647 (2009). https://doi.org/10.1103/RevModPhys.81.647
N.R. Cooper, Rotating quantum hall states. Adv. Phys. 57, 539 (2008). https://doi.org/10.1080/00018730802564122
K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters 45, 494 (1980). https://doi.org/10.1103/PhysRevLett.45.494
D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. Nijs, Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982). https://doi.org/10.1103/PhysRevLett.49.405
D.F. Lima, S. Azevedo, F. Pereira, L.F.C. Filgueiras, C. Silva, E.O, Optical and electronic properties of a two-dimensional quantum ring under rotating effects. Annals of Physics 459, 169547 (2023). https://doi.org/10.1016/j.aop.2023.169547
Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959). https://doi.org/10.1103/PhysRev.115.485
M. Büttiker, Y. Imry, R. Landauer, Aharonov-bohm effect in normal metal quantum coherence and transport. Physical Review Letters 50, 1983 (1983) https://doi.org/10.1103/PhysRevLett.50.1983
L.F.C. Pereira, M.M. Cunha, E.O. Silva, 1d quantum ring: a toy model describing noninertial effects on electronic states, persistent current and magnetization. Few-Body Syst. 63(3), 58 (2022). https://doi.org/10.1007/s00601-022-01761-1
L.F.C. Pereira, F.M. Andrade, C. Filgueiras, E.O. Silva, Study of electronic properties, magnetization and persistent currents in a mesoscopic ring by controlled curvature. Physica E Low Dim. Syst. Nanostruct. 132, 114760 (2021). https://doi.org/10.1016/j.physe.2021.114760
Y. Meir, O. Entin-Wohlman, Y. Gefen, Magnetic-field and spin-orbit interaction in restricted geometries: solvable models. Phys. Rev. B 42, 8351–8360 (1990). https://doi.org/10.1103/PhysRevB.42.8351
R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems. Springer Tracts in Modern Physics 191, 1 (2003). https://doi.org/10.1007/b13586
H. Zhu, C.-F. Liu, D.-S. Wang, S.-G. Yin, L. Zhuang, W.-M. Liu, Spin-orbit coupling controlling the topological vortical phase transition in spin-2 rotating Bose-Einstein condensates. Phys. Rev. A 104, 053325 (2021). https://doi.org/10.1103/PhysRevA.104.053325
L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner, W.T.M. Irvine, Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. 112(47), 14495–14500 (2015). https://doi.org/10.1073/pnas.1507413112
M. Hamada, S. Murakami, Conversion between electron spin and microscopic atomic rotation. Phys. Rev. Res. 2, 023275 (2020). https://doi.org/10.1103/PhysRevResearch.2.023275
N. Regnault, T. Jolicoeur, Fractional quantum hall effect in rotating Bose-Einstein condensates. Phys. Rev. Lett. 91, 030402 (2003). https://doi.org/10.1103/PhysRevLett.91.030402
L. Dantas, C. Furtado, A.L. Silva Netto, Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 379(1), 11–15 (2015). https://doi.org/10.1016/j.physleta.2014.10.016
G. Rizzi, M.L. Ruggiero. (eds.): Relativistic Physics in Rotating Reference Frames. Springer. (2004)
W. Tan, J. Inkson, Electron states in a two-dimensional ring-an exactly soluble model. Semicond. Sci. Technol. 11(11), 1635 (1996)
C.M.O. Pereira, Azevedo, F.d.S., Pereira, L.F.C., Silva, E.O., Rotating effects on the photoionization cross-section of a 2d quantum ring. Communications in Theoretical Physics 76(10), 105701 (2024). https://doi.org/10.1088/1572-9494/ad597c
N. Byers, C.N. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46–49 (1961). https://doi.org/10.1103/PhysRevLett.7.46
A.G. Rojo, R. Merlin, Persistent magnetic moment of rotating mesoscopic rings and cylinders. Phys. Rev. B 54, 1877–1879 (1996). https://doi.org/10.1103/PhysRevB.54.1877
J.E. Brandão, F. Moraes, M.M. Cunha, J.R.F. Lima, C. Filgueiras, Inertial-hall effect: the influence of rotation on the hall conductivity. Res. Phys. 5, 55–59 (2015). https://doi.org/10.1016/j.rinp.2015.02.003
C. Filgueiras, J. Brandão, F. Moraes, Tuning the hall conductivity with rotation. Europhys. Lett. 110(2), 27003 (2015). https://doi.org/10.1209/0295-5075/110/27003
F.M. Andrade, E.O. Silva, D. Assafrão, C. Filgueiras, Effects of quantum deformation on the integer quantum hall effect. Europhys. Lett. 116(3), 31002 (2016). https://doi.org/10.1209/0295-5075/116/31002
D. Sidler, V. Rokaj, M. Ruggenthaler, A. Rubio, Class of distorted landau levels and hall phases in a two-dimensional electron gas subject to an inhomogeneous magnetic field. Phys. Rev. Res. 4, 043059 (2022). https://doi.org/10.1103/PhysRevResearch.4.043059
Acknowledgements
This work was partially supported by the Brazilian agencies CAPES, CNPq and FAPEMA. E. O. Silva acknowledges CNPq Grant PQ 306308/2022-3, FAPEMA Grants APP-12256/22 and UNIVERSAL-06395/22. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pereira, C.M.O., Pereira, L.F.C., Assafrão, D. et al. Rotating effects on the Hall conductivity in a quantum dot. Eur. Phys. J. Plus 140, 980 (2025). https://doi.org/10.1140/epjp/s13360-025-06925-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-025-06925-6