Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
  • 885 Accesses

Abstract

If \( f(x) = \tfrac{1} {2}(Ax,x) - \operatorname{Re} (b,x), A = A^* \in \mathbb{C}^{n \times n} \), then the boundedness of f from below is equivalent to the nonnegative definiteness of A (prove this). Let us assume that A > 0. In this case, a linear system Ax = b has a unique solution z, and, for any x,

$$ f(x) - f(z) = \frac{1} {2}(A(x - z),x - z) \equiv E(x). \Rightarrow $$

z is the single minimum point for f (x). ⇒ A minimization method for f can equally serve as a method of solving a linear system with the Hermitian positively definite coefficient matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Chou. On the optimality of Krylov information. J. of Complexity 3: 26–40 (1987).

    Article  MATH  Google Scholar 

  2. G. I. Marchuk and Yu. A. Kuznetsov. Iterative methods and quadratic functional. Methods of Numerical Mathematics. Novosibirsk, 1975, pp. 4–143.

    Google Scholar 

  3. Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Scientific and Stat. Comp. 7: 856–869 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  4. I first heard about this striking relation from S. A. Goreinov.

    Google Scholar 

  5. L. Zhou and H. F. Walker. Residual smoothing techniques for iterative methods. SIAM 3. on Sci. Comput. 15(2): 297–312 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60: 315–339 (1991).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tyrtyshnikov, E.E. (1997). Lecture 19. In: A Brief Introduction to Numerical Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8136-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8136-4_19

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6413-2

  • Online ISBN: 978-0-8176-8136-4

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics