Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Physical Health and Nutrition for Esports Athletes

  • Chapter
  • First Online:
Esports Nutrition

Abstract

Esports athletes face unique physical challenges, including prolonged sedentary behavior, repetitive strain injuries, and cognitive demands that require sustained focus, rapid decision-making, and optimal hand–eye coordination. This chapter explores the scientific evidence on the physiological demands of esports and the critical role of nutrition in mitigating these risks. Key topics include the impact of diet quality, macronutrients, and micronutrients on health, cognitive and physical performance, the role of hydration in maintaining optimal function, and dietary strategies to prevent musculoskeletal disorders. Additionally, case studies from professional esports teams illustrate real-world applications of these principles, providing practical insights for athletes and coaches. By integrating evidence-based nutritional strategies, esports athletes may enhance their health, reduce injury risks, and improve overall performance. While recognizing the need for further research in this area, this chapter aims to serve as a foundational guide for optimizing the health, performance, and competitive longevity of esports professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMI:

body mass index

CRP:

C-reactive protein

CVS:

computer vision syndrome

DHA:

docosahexaenoic acid

DII:

dietary inflammatory index

EPA:

eicosapentaenoic acid

FPS:

first-person shooter

IL-6:

interleukin 6

TNF-α:

tumor necrosis factor alpha

References

  1. DiFrancisco-Donoghue, J., Balentine, J., Schmidt, G., & Zwibel, H. (2019). Managing the health of the eSport athlete: An integrated health management model. BMJ Open Sport & Exercise Medicine, 5(1), e000467. https://doi.org/10.1136/bmjsem-2018-000467

    Article  Google Scholar 

  2. Ashok, K., Purushothaman, V. K., & Muniandy, Y. (2020). Prevalence of forward head posture in electronic gamers and associated factors. International Journal of Aging Health and Movement, 2(2), 19–27.

    Google Scholar 

  3. Ribeiro, F. J., Viana, V., Borges, N., & Teixeira, V. H. (2021). The emergence of eSports nutrition: A review. CEJSSM, 33, 81–95. https://doi.org/10.18276/cej.2021.1-08

    Article  Google Scholar 

  4. Kaufman, M., Nguyen, C., Shetty, M., Oppezzo, M., Barrack, M., & Fredericson, M. (2023). Popular dietary trends' impact on athletic performance: A critical analysis review. Nutrients, 15(16). https://doi.org/10.3390/nu15163511

  5. Zhang, M., Shan, B., Lin, S., Xu, J., & Zhang, N. (2023). Editorial: Nutrition and metabolism in musculoskeletal disorders. Frontiers in Nutrition, 10, 1269939. https://doi.org/10.3389/fnut.2023.1269939

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie, H., Wang, H., Wu, Z., Li, W., Liu, Y., & Wang, N. (2023). The association of dietary inflammatory potential with skeletal muscle strength, mass, and sarcopenia: A meta-analysis. Frontiers in Nutrition, 10, 1100918. https://doi.org/10.3389/fnut.2023.1100918

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoshida, K., Sakai, O., Honda, T., Kikuya, T., Takeda, R., Sawabe, A., et al. (2023). Effects of astaxanthin, lutein, and zeaxanthin on eye–hand coordination and smooth-pursuit eye movement after visual display terminal operation in healthy subjects: a randomized, double-blind placebo-controlled intergroup trial. Nutrients, 15(6), 1459. https://doi.org/10.3390/nu15061459

    Article  PubMed  PubMed Central  Google Scholar 

  8. Franks, R. R., King, D., Bodine, W., Chisari, E., Heller, A., Ft, J., et al. (2022). AOASM position statement on Esports, active video gaming, and the role of the sports medicine physician. Clinical Journal of Sport Medicine, 32(3), e221–e2e9. https://doi.org/10.1097/jsm.0000000000001034

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khan, M. A., & Chaikumarn, M. Musculoskeletal disorders, perceived stress, and ergonomic risk factors among smartphone eSports athletes: A cross-sectional study. Journal of Musculoskeletal Surgery and Research, 8. https://doi.org/10.25259/JMSR_113_2024

  10. Lewis, J., Trinh, P., & Kirsh, D. (2011). A corpus analysis of strategy video game play in starcraft: Brood war. In Proceedings of the Annual Meeting of the Cognitive Science Society.

    Google Scholar 

  11. Saragiotto, B. T., Di Pierro, C., & Lopes, A. D. (2014). Risk factors and injury prevention in elite athletes: A descriptive study of the opinions of physical therapists, doctors and trainers. Brazilian Journal of Physical Therapy, 18. https://doi.org/10.1590/S1413-35552012005000147

  12. Ward, M. R., & Harmon, A. D. (2019). ESport superstars. Journal of Sports Economics, 20(8), 987–1013. https://doi.org/10.1177/1527002519859417

    Article  Google Scholar 

  13. S.L. DA. (2016). Hard reality faces eSports gamers in their battle with injuries. https://en.as.com/en/2016/12/16/other_sports/1481898856_011222.html. Accessed 12 Feb 2025.

  14. Brian, M. (2015). One of eSports' biggest stars retires with repetitive strain injury. https://www.engadget.com/2015-04-27-hai-lam-league-of-legends-retirement.html. Accessed 12 Feb 2025.

  15. Leporati, G. (2022). Aching wrists, early retirement and the surprising physical toll of esports. https://www.washingtonpost.com/video-games/esports/2022/03/14/professional-esports-athlete-injuries/. Accessed 12 Feb 2025.

  16. Sousa, A., Ahmad, S. L., Hassan, T., Yuen, K., Douris, P., Zwibel, H., et al. (2020). Physiological and cognitive functions following a discrete session of competitive Esports gaming. Frontiers in Psychology, 11, 11. https://doi.org/10.3389/fpsyg.2020.01030

    Article  Google Scholar 

  17. Krarup, K. B., Rantanen, J. M., Mørk, M., Pedersen, I. S., Christensen, J. H., Kristensen, S. R., et al. (2022). The physiological and cardiologic effects of long video gaming sessions in adult males. Sports Medicine International Open, 6(01), E39–E46. https://doi.org/10.1055/a-1858-8436

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tholl, C., Soffner, M., & Froböse, I. (2024). How strenuous is esports? Perceived physical exertion and physical state during competitive video gaming. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1370485

  19. Kim, H., Kim, S., & Wu, J. (2023). Perceptual-motor abilities of professional Esports gamers and amateurs. JEGE, 1(1), jege.2022-0001. https://doi.org/10.1123/jege.2022-0001

    Article  Google Scholar 

  20. Wenkai, G., Fengxin, L., & Xuedong, W. (2024). Differences in hand-eye coordination: A comparative analysis between eSports and non-eSports populations. Research Square. https://doi.org/10.21203/rs.3.rs-4528756/v1

  21. Zhang, Y., Hu, Z., Huo, B., Liu, Y., & Zhao, X. (2023). Assessment of oculomotor function after prolonged computer use. Heliyon., 9(9), e19255. https://doi.org/10.1016/j.heliyon.2023.e19255

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jorge, J., Cymbron, F., da Silva, P. H., & Almeida, C. P. (2024). Comparative analysis of visual and cognitive performance in esports athletes and soccer players. Clinical & Experimental Optometry, 1–6. https://doi.org/10.1080/08164622.2024.2430637

  23. Chaiwiang, N., & Koo-Akarakul, J. (2024). Digital challenges: Investigating computer vision syndrome in Thai Esports through a case-control approach. Clinical Optometry, 16, 201–210. https://doi.org/10.2147/opto.S460868

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. W., Cho, H. G., Moon, B. Y., Kim, S. Y., & Yu, D. S. (2019). Effects of prolonged continuous computer gaming on physical and ocular symptoms and binocular vision functions in young healthy individuals. PeerJ, 7, e7050. https://doi.org/10.7717/peerj.7050

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fogt, J. S., Onate, J., Emerson, A., Kraemer, W., & Fogt, N. (2021). Visual and ocular characteristics of eSports participants. Optometry and Vision Science, 98(7), 771–776. https://doi.org/10.1097/opx.0000000000001725

    Article  PubMed  Google Scholar 

  26. Kyle Yuen, S. A., Hassan, T., Zwibel, H., & DiFrancisco-Donoghue, J. (2023). Assessing lean body mass, body fat and physical activity in eSports players compared to non-eSports players. Journal of the American Osteopathic Association. https://osteopathic.org/

  27. DiFrancisco-Donoghue, J., Werner, W. G., Douris, P. C., & Zwibel, H. (2022). Esports players, got muscle? Competitive video game players' physical activity, body fat, bone mineral content, and muscle mass in comparison to matched controls. Journal of Sport and Health Science, 11(6), 725–730. https://doi.org/10.1016/j.jshs.2020.07.006

    Article  PubMed  Google Scholar 

  28. Ketelhut, S., Bodman, A., Ries, T., & Nigg, C. R. (2023). Challenging the portrait of the unhealthy gamer—The fitness and health status of Esports players and their peers: Comparative cross-sectional study. Journal of Medical Internet Research, 25, e45063. https://doi.org/10.2196/45063

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sakai, Y., Matsui, H., Ito, S., Hida, T., Ito, K., Koshimizu, H., et al. (2017). Sarcopenia in elderly patients with chronic low back pain. Osteoporos Sarcopenia, 3(4), 195–200. https://doi.org/10.1016/j.afos.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim, B., & Yim, J. (2020). Core stability and hip exercises improve physical function and activity in patients with non-specific low back pain: A randomized controlled trial. The Tohoku Journal of Experimental Medicine, 251(3), 193–206. https://doi.org/10.1620/tjem.251.193

    Article  PubMed  Google Scholar 

  31. Fabbri, E., Chiles Shaffer, N., Gonzalez-Freire, M., Shardell, M. D., Zoli, M., Studenski, S. A., et al. (2017). Early body composition, but not body mass, is associated with future accelerated decline in muscle quality. Journal of Cachexia, Sarcopenia and Muscle, 8(3), 490–499. https://doi.org/10.1002/jcsm.12183

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eguchi, Y., Suzuki, M., Yamanaka, H., Tamai, H., Kobayashi, T., Orita, S., et al. (2017). Associations between sarcopenia and degenerative lumbar scoliosis in older women. Scoliosis Spinal Disord, 12, 9. https://doi.org/10.1186/s13013-017-0116-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Onyemaechi, N. O., Anyanwu, G. E., Obikili, E. N., Onwuasoigwe, O., & Nwankwo, O. E. (2016). Impact of overweight and obesity on the musculoskeletal system using lumbosacral angles. Patient Preference and Adherence, 10, 291–296. https://doi.org/10.2147/ppa.S90967

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alangari, A. A., Almutairi, M. M., Alrrajeh, A. M., Aleidi, M. A., Alqarni, M. A., Almeneif, H. A., et al. (2022). The relation between body mass index and musculoskeletal injury. Cureus, 14(9), e28965. https://doi.org/10.7759/cureus.28965

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gaida, J. E., Ashe, M. C., Bass, S. L., & Cook, J. L. (2009). Is adiposity an under-recognized risk factor for tendinopathy? A systematic review. Arthritis & Rheumatology, 61(6), 840–849. https://doi.org/10.1002/art.24518

    Article  Google Scholar 

  36. Walsh, T. P., Arnold, J. B., Evans, A. M., Yaxley, A., Damarell, R. A., & Shanahan, E. M. (2018). The association between body fat and musculoskeletal pain: A systematic review and meta-analysis. BMC Musculoskeletal Disorders, 19(1), 233. https://doi.org/10.1186/s12891-018-2137-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Montero, D., Walther, G., Perez-Martin, A., Roche, E., & Vinet, A. (2012). Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: Markers and effect of lifestyle intervention. Obesity Reviews, 13(5), 441–455. https://doi.org/10.1111/j.1467-789X.2011.00956.x

    Article  PubMed  Google Scholar 

  38. Yau, P. L., Kang, E. H., Javier, D. C., & Convit, A. (2014). Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity, 22(8), 1865–1871. https://doi.org/10.1002/oby.20801

    Article  PubMed  Google Scholar 

  39. Sweat, V., Yates, K. F., Migliaccio, R., & Convit, A. (2017). Obese adolescents show reduced cognitive processing speed compared with healthy weight peers. Childhood Obesity, 13(3), 190–196. https://doi.org/10.1089/chi.2016.0255

    Article  PubMed  PubMed Central  Google Scholar 

  40. Medic, N., Ziauddeen, H., Ersche, K. D., Farooqi, I. S., Bullmore, E. T., Nathan, P. J., et al. (2016). Increased body mass index is associated with specific regional alterations in brain structure. International Journal of Obesity, 40(7), 1177–1182. https://doi.org/10.1038/ijo.2016.42

    Article  PubMed  Google Scholar 

  41. Stanek, K. M., Grieve, S. M., Brickman, A. M., Korgaonkar, M. S., Paul, R. H., Cohen, R. A., et al. (2011). Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity, 19(3), 500–504. https://doi.org/10.1038/oby.2010.312

    Article  PubMed  Google Scholar 

  42. Xu, J., Li, Y., Lin, H., Sinha, R., & Potenza, M. N. (2013). Body mass index correlates negatively with white matter integrity in the fornix and corpus callosum: A diffusion tensor imaging study. Human Brain Mapping, 34(5), 1044–1052. https://doi.org/10.1002/hbm.21491

    Article  PubMed  Google Scholar 

  43. Majumdar, S., Chaudhuri, A., Ghar, M., Rahaman, W. B., & Hai, A. (2017). Effect of obesity on nerve conduction study in an urban population of a developing country. Saudi Journal of Sports Medicine, 17(3), 162–167. https://doi.org/10.4103/sjsm.sjsm_8_17

    Article  Google Scholar 

  44. Liang, J., Matheson, B., Kaye, W., & Boutelle, K. (2014). Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. International Journal of Obesity, 38(4), 494–506. https://doi.org/10.1038/ijo.2013.142

    Article  PubMed  Google Scholar 

  45. Caiano, L. M., Costanzo, S., Panzera, T., Di Castelnuovo, A., de Gaetano, G., Donati, M. B., et al. (2021). Association between body mass index, waist circumference, and relative fat mass with the risk of first unprovoked venous thromboembolism. Nutrition, Metabolism, and Cardiovascular Diseases, 31(11), 3122–3130. https://doi.org/10.1016/j.numecd.2021.07.018

    Article  PubMed  Google Scholar 

  46. Ageno, W., Becattini, C., Brighton, T., Selby, R., & Kamphuisen, P. W. (2008). Cardiovascular risk factors and venous thromboembolism. Circulation, 117(1), 93–102. https://doi.org/10.1161/CIRCULATIONAHA.107.709204

    Article  PubMed  Google Scholar 

  47. Rambaran, K. A., & Alzghari, S. K. (2020). Gamer's thrombosis: A review of published reports. The Ochsner Journal, 20(2), 182–186. https://doi.org/10.31486/toj.19.0058

    Article  PubMed  PubMed Central  Google Scholar 

  48. DiFrancisco-Donoghue, J., Borges, K., Li, T., Ballone, O., Zwibel, H., & Douris, P. C. (2024). Reducing thrombotic risks in video gamers: Investigating the benefits of walking and compression sleeves on blood hemodynamics. American Journal of Physiology. Heart and Circulatory Physiology, 326(3), H538–HH47. https://doi.org/10.1152/ajpheart.00669.2023

    Article  PubMed  Google Scholar 

  49. Rudolf, K., Bickmann, P., Froböse, I., Tholl, C., Wechsler, K., & Grieben, C. (2020). Demographics and health behavior of video game and eSports players in Germany: The eSports study 2019. International Journal of Environmental Research and Public Health, 17(6), 1870. https://doi.org/10.3390/ijerph17061870

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huth, C. (2021). Nutritional behaviour of (non-)eSports players—A comparative study. Quality in Sport, 7(2), 38–44. https://doi.org/10.12775/QS.2021.009

    Article  Google Scholar 

  51. Lam, W.-K., Liu, R.-T., Chen, B., Huang, X.-Z., Yi, J., & Wong, D. W.-C. (2022). Health risks and musculoskeletal problems of elite mobile Esports players: A cross-sectional descriptive study. Sports Medicine - Open, 8(1), 65. https://doi.org/10.1186/s40798-022-00458-3

    Article  PubMed  PubMed Central  Google Scholar 

  52. Szot, M., Frączek, B., & Tyrała, F. (2023). Nutrition patterns of polish Esports players. Nutrients, 15(1), 149. https://doi.org/10.3390/nu15010149

    Article  Google Scholar 

  53. Kulecka, M., Fraczek, B., Balabas, A., Czarnowski, P., Zeber-Lubecka, N., Zapala, B., et al. (2023). Characteristics of the gut microbiome in esports players compared with those in physical education students and professional athletes. Frontiers in Nutrition, 9, 9. https://doi.org/10.3389/fnut.2022.1092846

    Article  Google Scholar 

  54. Soffner, M., Bickmann, P., Tholl, C., & Froböse, I. (2023). Dietary behavior of video game players and esports players in Germany: A cross-sectional study. Journal of Health, Population, and Nutrition, 42(1), 29. https://doi.org/10.1186/s41043-023-00373-7

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ribeiro, F. J., Teixeira, R., & Poínhos, R. (2023). Dietary habits and gaming behaviors of Portuguese and Brazilian Esports players. Nutrients, 15(19), 4200. https://doi.org/10.3390/nu15194200

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ip, E. J., Urbano, E. P. T., Caballero, J., Lau, W. B., Clauson, K. A., Torn, R. A., et al. (2021). The video gamer 500: Performance-enhancing drug use and internet gaming disorder among adult video gamers. Computers in Human Behavior, 123, 106890. https://doi.org/10.1016/j.chb.2021.106890

    Article  Google Scholar 

  57. Turner, J. (2023). Exploring the role of dietary intake and supplementation on performance in video gaming and esports. Queensland University of Technology.

    Google Scholar 

  58. Goulart, J. B., Aitken, L. S., Siddiqui, S., Cuevas, M., Cardenas, J., Beathard, K. M., et al. (2023). Nutrition, lifestyle, and cognitive performance in esport athletes. Frontiers in Nutrition, 10, 1120303. https://doi.org/10.3389/fnut.2023.1120303

    Article  PubMed  PubMed Central  Google Scholar 

  59. Phillips, J. A. (2021). Dietary guidelines for Americans, 2020-2025. Workplace Health & Safety, 69(8), 395. https://doi.org/10.1177/21650799211026980

    Article  Google Scholar 

  60. Intakes IoMUCtRDR. (2005). Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients. https://www.ncbi.nlm.nih.gov/books/NBK56068/. Accessed 15 Feb 2025.

  61. Ribeiro, F., Teixeira, R., & Poínhos, R. (2024). Hydration status of esports players in a live competition. Science & Sports, 39(7), 581–587. https://doi.org/10.1016/j.scispo.2024.01.001

    Article  Google Scholar 

  62. Malisova, O., Athanasatou, A., Pepa, A., Husemann, M., Domnik, K., Braun, H., et al. (2016). Water intake and hydration indices in healthy European adults: The European hydration research study (EHRS). Nutrients, 8(4), 204. https://doi.org/10.3390/nu8040204

    Article  PubMed  PubMed Central  Google Scholar 

  63. Monteiro, R., & Azevedo, I. (2010). Chronic inflammation in obesity and the metabolic syndrome. Mediators of Inflammation, 2010(1), 289645. https://doi.org/10.1155/2010/289645

    Article  PubMed  PubMed Central  Google Scholar 

  64. Khalafi, M., Symonds, M. E., & Akbari, A. (2022). The impact of exercise training versus caloric restriction on inflammation markers: A systemic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 62(15), 4226–4241. https://doi.org/10.1080/10408398.2021.1873732

    Article  PubMed  Google Scholar 

  65. Veronese, N., Facchini, S., Stubbs, B., Luchini, C., Solmi, M., Manzato, E., et al. (2017). Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 72, 87–94. https://doi.org/10.1016/j.neubiorev.2016.11.017

    Article  Google Scholar 

  66. Wearing, S. C., Hennig, E. M., Byrne, N. M., Steele, J. R., & Hills, A. P. (2006). Musculoskeletal disorders associated with obesity: A biomechanical perspective. Obesity Reviews, 7(3), 239–250. https://doi.org/10.1111/j.1467-789X.2006.00251.x

    Article  PubMed  Google Scholar 

  67. Forsythe, C. E., Phinney, S. D., Fernandez, M. L., Quann, E. E., Wood, R. J., Bibus, D. M., et al. (2008). Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids, 43(1), 65–77. https://doi.org/10.1007/s11745-007-3132-7

    Article  PubMed  Google Scholar 

  68. Shivappa, N., Steck, S. E., Hurley, T. G., Hussey, J. R., & Hébert, J. R. (2014). Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutrition, 17(8), 1689–1696. https://doi.org/10.1017/s1368980013002115

    Article  PubMed  Google Scholar 

  69. Tabung, F. K., Steck, S. E., Zhang, J., Ma, Y., Liese, A. D., Agalliu, I., et al. (2015). Construct validation of the dietary inflammatory index among postmenopausal women. Annals of Epidemiology, 25(6), 398–405. https://doi.org/10.1016/j.annepidem.2015.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lopez-Garcia, E., Schulze, M. B., Fung, T. T., Meigs, J. B., Rifai, N., Manson, J. E., et al. (2004). Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. The American Journal of Clinical Nutrition, 80(4), 1029–1035. https://doi.org/10.1093/ajcn/80.4.1029

    Article  PubMed  Google Scholar 

  71. Luvián-Morales, J., Varela-Castillo, F. O., Flores-Cisneros, L., Cetina-Pérez, L., & Castro-Eguiluz, D. (2022). Functional foods modulating inflammation and metabolism in chronic diseases: A systematic review. Critical Reviews in Food Science and Nutrition, 62(16), 4371–4392. https://doi.org/10.1080/10408398.2021.1875189

    Article  PubMed  Google Scholar 

  72. Hodge, A. M., Bassett, J. K., Dugué, P. A., Shivappa, N., Hébert, J. R., Milne, R. L., et al. (2018). Dietary inflammatory index or Mediterranean diet score as risk factors for total and cardiovascular mortality. Nutrition, Metabolism, and Cardiovascular Diseases, 28(5), 461–469. https://doi.org/10.1016/j.numecd.2018.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  73. Khamoushi, F., Soleimani, D., Najafi, F., Ahmadi, N., Heidarzadeh-Esfahani, N., Anvari, B., et al. (2023). Association between dietary inflammatory index and musculoskeletal disorders in adults. Scientific Reports, 13(1), 20302. https://doi.org/10.1038/s41598-023-46429-w

    Article  PubMed  PubMed Central  Google Scholar 

  74. Willett, W. C., Sacks, F., Trichopoulou, A., Drescher, G., Ferro-Luzzi, A., Helsing, E., et al. (1995). Mediterranean diet pyramid: A cultural model for healthy eating. The American Journal of Clinical Nutrition, 61(6 Suppl), 1402s–1406s. https://doi.org/10.1093/ajcn/61.6.1402S

    Article  PubMed  Google Scholar 

  75. Mohammadi, S., Hosseinikia, M., Ghaffarian-Bahraman, A., Clark, C. C. T., Davies, I. G., Yousefi Rad, E., et al. (2023). Dietary inflammatory index and elevated serum C-reactive protein: A systematic review and meta-analysis. Food Science & Nutrition, 11(10), 5786–5798. https://doi.org/10.1002/fsn3.3553

    Article  Google Scholar 

  76. Ding, T., Aimaiti, M., Cui, S., Shen, J., Lu, M., Wang, L., et al. (2023). Meta-analysis of the association between dietary inflammatory index and cognitive health. Frontiers in Nutrition, 10, 10. https://doi.org/10.3389/fnut.2023.1104255

    Article  Google Scholar 

  77. Martínez-Urbistondo, D., Perez-Diaz-del-Campo, N., Landecho, M. F., & Martínez, J. A. (2024). Alcohol drinking impacts on adiposity and steatotic liver disease: Concurrent effects on metabolic pathways and cardiovascular risks. Current Obesity Reports, 13(3), 461–474. https://doi.org/10.1007/s13679-024-00560-5

    Article  PubMed  PubMed Central  Google Scholar 

  78. Oscar-Berman, M., & Marinković, K. (2007). Alcohol: Effects on neurobehavioral functions and the brain. Neuropsychology Review, 17(3), 239–257. https://doi.org/10.1007/s11065-007-9038-6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tapert, S. F., Caldwell, L., & Burke, C. (2004). Alcohol and the adolescent brain: Human studies. Alcohol Research & Health, 28(4), 205.

    Google Scholar 

  80. Daviet, R., Aydogan, G., Jagannathan, K., Spilka, N., Koellinger, P. D., Kranzler, H. R., et al. (2022). Associations between alcohol consumption and gray and white matter volumes in the UK biobank. Nature Communications, 13(1), 1175. https://doi.org/10.1038/s41467-022-28735-5

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hijlkema, A., Roozenboom, C., Mensink, M., & Zwerver, J. (2022). The impact of nutrition on tendon health and tendinopathy: A systematic review. Journal of the International Society of Sports Nutrition, 19(1), 474–504. https://doi.org/10.1080/15502783.2022.2104130

    Article  PubMed  PubMed Central  Google Scholar 

  82. Passaretti, D., Candela, V., Venditto, T., Giannicola, G., & Gumina, S. (2016). Association between alcohol consumption and rotator cuff tear. Acta Orthopaedica, 87(2), 165–168. https://doi.org/10.3109/17453674.2015.1119599

    Article  PubMed  Google Scholar 

  83. Owens, B. D., Wolf, J. M., Seelig, A. D., Jacobson, I. G., Boyko, E. J., Smith, B., et al. (2013). Risk factors for lower extremity tendinopathies in military personnel. Orthopaedic Journal of Sports Medicine, 1(1), 2325967113492707. https://doi.org/10.1177/2325967113492707

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hapa, O., Cakici, H., Gideroğlu, K., Ozturan, K., Kükner, A., & Buğdayci, G. (2009). The effect of ethanol intake on tendon healing: A histological and biomechanical study in a rat model. Archives of Orthopaedic and Trauma Surgery, 129(12), 1721–1726. https://doi.org/10.1007/s00402-009-0877-x

    Article  PubMed  Google Scholar 

  85. Popkin, B. M., D'Anci, K. E., & Rosenberg, I. H. (2010). Water, hydration, and health. Nutrition Reviews, 68(8), 439–458. https://doi.org/10.1111/j.1753-4887.2010.00304.x

    Article  PubMed  Google Scholar 

  86. Elias, S., Hoffman, R., Saharov, G., Brenner, B., & Nadir, Y. (2016). Dehydration as a possible cause of monthly variation in the incidence of venous thromboembolism. Clinical and Applied Thrombosis/Hemostasis, 22(6), 569–574. https://doi.org/10.1177/1076029616649435

    Article  PubMed  Google Scholar 

  87. Masento, N. A., Golightly, M., Field, D. T., Butler, L. T., & van Reekum, C. M. (2014). Effects of hydration status on cognitive performance and mood. The British Journal of Nutrition, 111(10), 1841–1852. https://doi.org/10.1017/S0007114513004455

    Article  PubMed  Google Scholar 

  88. Benton, D., Jenkins, K. T., Watkins, H. T., & Young, H. A. (2016). Minor degree of hypohydration adversely influences cognition: A mediator analysis. The American Journal of Clinical Nutrition, 104(3), 603–612. https://doi.org/10.3945/ajcn.116.132605

    Article  PubMed  Google Scholar 

  89. Wittbrodt, M. T., & Millard-Stafford, M. (2018). Dehydration impairs cognitive performance: A meta-analysis. Medicine and Science in Sports and Exercise, 50(11), 2360–2368. https://doi.org/10.1249/MSS.0000000000001682

    Article  PubMed  Google Scholar 

  90. Sherwin, J. C., Kokavec, J., & Thornton, S. N. (2015). Hydration, fluid regulation and the eye: In health and disease. Clinical & Experimental Ophthalmology, 43(8), 749–764. https://doi.org/10.1111/ceo.12546

    Article  Google Scholar 

  91. Walsh, N. P., Fortes, M. B., Raymond-Barker, P., Bishop, C., Owen, J., Tye, E., et al. (2012). Is whole-body hydration an important consideration in dry eye? Investigative Ophthalmology & Visual Science, 53(10), 6622–6627. https://doi.org/10.1167/iovs.12-10175

    Article  Google Scholar 

  92. Fortes, M. B., Diment, B. C., Di Felice, U., Gunn, A. E., Kendall, J. L., Esmaeelpour, M., et al. (2011). Tear fluid osmolarity as a potential marker of hydration status. Medicine and Science in Sports and Exercise, 43(8), 1590–1597. https://doi.org/10.1249/MSS.0b013e31820e7cb6

    Article  PubMed  Google Scholar 

  93. Chisari, E., Rehak, L., Khan, W. S., & Maffulli, N. (2021). Tendon healing is adversely affected by low-grade inflammation. Journal of Orthopaedic Surgery and Research, 16(1), 700. https://doi.org/10.1186/s13018-021-02811-w

    Article  PubMed  PubMed Central  Google Scholar 

  94. Houser, M. C., Mac, V., Smith, D. J., Chicas, R. C., Xiuhtecutli, N., Flocks, J. D., et al. (2021). Inflammation-related factors identified as biomarkers of dehydration and subsequent acute kidney injury in agricultural workers. Biological Research for Nursing, 23(4), 676–688. https://doi.org/10.1177/10998004211016070

    Article  PubMed  PubMed Central  Google Scholar 

  95. Allen, M. D., Springer, D. A., Burg, M. B., Boehm, M., & Dmitrieva, N. I. (2019). Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight, 4(17). https://doi.org/10.1172/jci.insight.130949

  96. Venkatraman, A., Hawkins, J., McCain, R., Duan, C., Cannes do Nascimento, N., Cox, A., et al. (2022). The role of systemic dehydration in vocal fold healing: Preliminary findings. Laryngoscope Investigative Otolaryngology, 7(6), 1936–1942. https://doi.org/10.1002/lio2.942

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ogino, Y., Kakeda, T., Nakamura, K., & Saito, S. (2014). Dehydration enhances pain-evoked activation in the human brain compared with rehydration. Anesthesia and Analgesia, 118(6), 1317–1325. https://doi.org/10.1213/ANE.0b013e3182a9b028

    Article  PubMed  Google Scholar 

  98. Bear, T., Philipp, M., Hill, S., & Mündel, T. (2016). A preliminary study on how hypohydration affects pain perception. Psychophysiology, 53(5), 605–610. https://doi.org/10.1111/psyp.12610

    Article  PubMed  Google Scholar 

  99. Moyen, N. E., Ganio, M. S., Wiersma, L. D., Kavouras, S. A., Gray, M., McDermott, B. P., et al. (2015). Hydration status affects mood state and pain sensation during ultra-endurance cycling. Journal of Sports Sciences, 33(18), 1962–1969. https://doi.org/10.1080/02640414.2015.1021275

    Article  PubMed  Google Scholar 

  100. Geuter, S., Cunningham, J. T., & Wager, T. D. (2016). Disentangling opposing effects of motivational states on pain perception. Pain Reports, 1(3), e574. https://doi.org/10.1097/pr9.0000000000000574

    Article  PubMed  PubMed Central  Google Scholar 

  101. Farrell, M. J., Egan, G. F., Zamarripa, F., Shade, R., Blair-West, J., Fox, P., et al. (2006). Unique, common, and interacting cortical correlates of thirst and pain. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2416–2421. https://doi.org/10.1073/pnas.0511019103

    Article  PubMed  PubMed Central  Google Scholar 

  102. Turunen, M. J., Khayyeri, H., Guizar-Sicairos, M., & Isaksson, H. (2017). Effects of tissue fixation and dehydration on tendon collagen nanostructure. Journal of Structural Biology, 199(3), 209–215. https://doi.org/10.1016/j.jsb.2017.07.009

    Article  PubMed  Google Scholar 

  103. Sharma, P., & Maffulli, N. (2005). Tendon injury and tendinopathy: Healing and repair. The Journal of Bone and Joint Surgery. American Volume, 87(1), 187–202. https://doi.org/10.2106/jbjs.D.01850

    Article  PubMed  Google Scholar 

  104. O'Brien, M. (1997). Structure and metabolism of tendons. Scandinavian Journal of Medicine & Science in Sports, 7(2), 55–61. https://doi.org/10.1111/j.1600-0838.1997.tb00119.x

    Article  Google Scholar 

  105. Masic, A., Bertinetti, L., Schuetz, R., Chang, S.-W., Metzger, T. H., Buehler, M. J., et al. (2015). Osmotic pressure induced tensile forces in tendon collagen. Nature Communications, 6(1), 5942. https://doi.org/10.1038/ncomms6942

    Article  PubMed  Google Scholar 

  106. Saygı, B., Sarıtzalı, İ., Karaman, Ö., Yıldırım, Y., Tetik, C., & Esemenli, T. (2012). The effect of dehydration and irrigation on tendon adhesion formation after tendon exposure. Acta Orthopaedica et Traumatologica Turcica, 46(5), 393–397. https://doi.org/10.3944/aott.2012.2770

    Article  PubMed  Google Scholar 

  107. Haut, T. L., & Haut, R. C. (1997). The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. Journal of Biomechanics, 30(1), 79–81. https://doi.org/10.1016/s0021-9290(96)00108-x

    Article  PubMed  Google Scholar 

  108. Dabrowska, S., Grabowski, K., & Mlyniec, A. (2022). Rehydration of the tendon fascicle bundles using simulated body fluid ensures stable mechanical properties of the samples. Materials (Basel), 15(9). https://doi.org/10.3390/ma15093033

  109. Wu, G. (2016). Dietary protein intake and human health. Food & Function, 7(3), 1251–1265. https://doi.org/10.1039/c5fo01530h

    Article  Google Scholar 

  110. Chertoff, M. S. J. (2015). Protein malnutrition and brain development. Brain Disorders and Therapy, 04. https://doi.org/10.4172/2168-975X.1000171

  111. Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. The Journal of Nutrition, 137(6), 1539S–1547S. https://doi.org/10.1093/jn/137.6.1539S

    Article  PubMed  Google Scholar 

  112. Intakes SCotSEoDR, Interpretation So, Intakes UoDR, Nutrients SoURLo, Fiber PotDoD, Macronutrients Po. (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press.

    Google Scholar 

  113. Ahmed, F. W., Majeed, M. S., & Kirresh, O. (2023). Non-diabetic hypoglycemia. https://www.ncbi.nlm.nih.gov/books/NBK573079/. Accessed 14 Feb 2025.

  114. Benton, D., Owens, D. S., & Parker, P. Y. (1994). Blood glucose influences memory and attention in young adults. Neuropsychologia, 32(5), 595–607. https://doi.org/10.1016/0028-3932(94)90147-3

    Article  PubMed  Google Scholar 

  115. Guillou, L., Durand, V., Raymond, M., & Berticat, C. (2023). Chronic refined carbohydrate consumption measured by glycemic load and variation in cognitive performance in healthy people. Personality and Individual Differences, 206, 112138. https://doi.org/10.1016/j.paid.2023.112138

    Article  Google Scholar 

  116. Edefonti, V., Bravi, F., & Ferraroni, M. (2017). Breakfast and behavior in morning tasks: Facts or fads? Journal of Affective Disorders, 224, 16–26. https://doi.org/10.1016/j.jad.2016.12.028

    Article  PubMed  Google Scholar 

  117. Holesh, J. E., Aslam, S., & Martin, A. (2023). Physiology. In Carbohydrates. StatPearls Publishing.

    Google Scholar 

  118. Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2020). The health benefits of dietary fibre. Nutrients, 12(10). https://doi.org/10.3390/nu12103209

  119. Arnold, M. J., Harding, M. C., & Conley, A. T. (2021). Dietary guidelines for Americans 2020–2025: Recommendations from the US Departments of Agriculture and Health and Human Services. American Family Physician, 104(5), 533–536. https://doi.org/10.1097/NT.0000000000000512

    Article  PubMed  Google Scholar 

  120. Meijaard, E., Abrams, J. F., Slavin, J. L., & Sheil, D. (2022). Dietary fats, human nutrition and the environment: balance and sustainability. Frontiers in Nutrition, 9, 878644. https://doi.org/10.3389/fnut.2022.878644

    Article  PubMed  PubMed Central  Google Scholar 

  121. Azzolino, D., Bertoni, C., De Cosmi, V., Spolidoro, G. C. I., Agostoni, C., Lucchi, T., et al. (2024). Omega-3 polyunsatured fatty acids and physical performance across the lifespan: A narrative review. Frontiers in Nutrition, 11, 1414132. https://doi.org/10.3389/fnut.2024.1414132

    Article  PubMed  PubMed Central  Google Scholar 

  122. Crupi, R., Marino, A., & Cuzzocrea, S. (2013). N-3 fatty acids: Role in neurogenesis and neuroplasticity. Current Medicinal Chemistry, 20(24), 2953–2963. https://doi.org/10.2174/09298673113209990140

    Article  PubMed  Google Scholar 

  123. Sherzai, D., Moness, R., Sherzai, S., & Sherzai, A. (2023). A systematic review of Omega-3 fatty acid consumption and cognitive outcomes in neurodevelopment. American Journal of Lifestyle Medicine, 17(5), 649–685. https://doi.org/10.1177/15598276221116052

    Article  PubMed  Google Scholar 

  124. Zhang, X.-W., Hou, W.-S., Li, M., & Tang, Z.-Y. (2016). Omega-3 fatty acids and risk of cognitive decline in the elderly: A meta-analysis of randomized controlled trials. Aging Clinical and Experimental Research, 28(1), 165–166. https://doi.org/10.1007/s40520-015-0381-9

    Article  PubMed  Google Scholar 

  125. Goldberg, R. J., & Katz, J. (2007). A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain, 129(1), 210–223. https://doi.org/10.1016/j.pain.2007.01.020

    Article  PubMed  Google Scholar 

  126. Mendonça, C. R., Noll, M., Castro, M. C. R., & Silveira, E. A. (2020). Effects of nutritional interventions in the control of musculoskeletal pain: An integrative review. Nutrients, 12(10), 3075. https://doi.org/10.3390/nu12103075

    Article  PubMed  PubMed Central  Google Scholar 

  127. Senftleber, N. K., Nielsen, S. M., Andersen, J. R., Bliddal, H., Tarp, S., Lauritzen, L., et al. (2017). Marine oil supplements for arthritis pain: A systematic review and meta-analysis of randomized trials. Nutrients, 9(1), 42. https://doi.org/10.3390/nu9010042

    Article  PubMed  PubMed Central  Google Scholar 

  128. Morris, A. L., & Mohiuddin, S. S. (2023). Biochemistry. In Nutrients. StatPearls Publishing.

    Google Scholar 

  129. Kennedy, D. O., Stevenson, E. J., Jackson, P. A., Dunn, S., Wishart, K., Bieri, G., et al. (2016). Multivitamins and minerals modulate whole-body energy metabolism and cerebral blood-flow during cognitive task performance: A double-blind, randomised, placebo-controlled trial. Nutrition and Metabolism, 13(1), 11. https://doi.org/10.1186/s12986-016-0071-4

    Article  PubMed  PubMed Central  Google Scholar 

  130. Passarelli, S., Free, C. M., Shepon, A., Beal, T., Batis, C., & Golden, C. D. (2024). Global estimation of dietary micronutrient inadequacies: A modelling analysis. The Lancet Global Health, 12(10), e1590–e15e9. https://doi.org/10.1016/s2214-109x(24)00276-6

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ryan, M. J., Dudash, H. J., Docherty, M., Geronilla, K. B., Baker, B. A., Haff, G. G., et al. (2010). Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Experimental Gerontology, 45(11), 882–895. https://doi.org/10.1016/j.exger.2010.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  132. Schellack, G., Harirari, P., & Schellack, N. (2016). B-complex vitamin deficiency and supplementation. SA Pharmaceutical Journal, 83(4), 14–19.

    Google Scholar 

  133. Rebelos, E., Tentolouris, N., & Jude, E. (2023). The role of vitamin D in health and disease: A narrative review on the mechanisms linking vitamin D with disease and the effects of supplementation. Drugs, 83(8), 665–685. https://doi.org/10.1007/s40265-023-01875-8

    Article  PubMed  PubMed Central  Google Scholar 

  134. Alonso-Pérez, J. L., Martínez-Pérez, I., Romero-Morales, C., Abuín-Porras, V., López-Bueno, R., Rossettini, G., et al. (2024). Relationship between serum vitamin D levels and chronic musculoskeletal pain in adults: A systematic review. Nutrients, 16(23), 4061. https://doi.org/10.3390/nu16234061

    Article  PubMed  PubMed Central  Google Scholar 

  135. de Baaij, J. H. F., Hoenderop, J. G. J., & Bindels, R. J. M. (2015). Magnesium in man: Implications for health and disease. Physiological Reviews, 95(1), 1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  PubMed  Google Scholar 

  136. Maier, J. A., Castiglioni, S., Locatelli, L., Zocchi, M., & Mazur, A. (2021). Magnesium and inflammation: Advances and perspectives. Seminars in Cell & Developmental Biology, 115, 37–44. https://doi.org/10.1016/j.semcdb.2020.11.002

    Article  Google Scholar 

  137. Prasad, A. S. (2014). Zinc is an antioxidant and anti-inflammatory agent: Its role in human health. Frontiers in Nutrition, 1. https://doi.org/10.3389/fnut.2014.00014

  138. Bonaventura, P., Benedetti, G., Albarède, F., & Miossec, P. (2015). Zinc and its role in immunity and inflammation. Autoimmunity Reviews, 14(4), 277–285. https://doi.org/10.1016/j.autrev.2014.11.008

    Article  PubMed  Google Scholar 

  139. Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25(1), 11–24. https://doi.org/10.1007/s10787-017-0309-4

    Article  PubMed  PubMed Central  Google Scholar 

  140. Katsarou, A., & Pantopoulos, K. (2020). Basics and principles of cellular and systemic iron homeostasis. Molecular Aspects of Medicine, 75, 100866. https://doi.org/10.1016/j.mam.2020.100866

    Article  PubMed  Google Scholar 

  141. Charlebois, E., & Pantopoulos, K. (2023). Nutritional aspects of iron in health and disease. Nutrients, 15(11). https://doi.org/10.3390/nu15112441

  142. Bird, R. P., & Eskin, N. A. M. (2021). Chapter two – The emerging role of phosphorus in human health. In N. A. M. Eskin (Ed.), Advances in food and nutrition research (pp. 27–88). Academic Press.

    Google Scholar 

  143. Gutiérrez, O. M. (2020). Chapter 20 – Phosphorus. In B. P. Marriott, D. F. Birt, V. A. Stallings, & A. A. Yates (Eds.), Present knowledge in nutrition (11th ed., pp. 335–348). Academic Press.

    Chapter  Google Scholar 

  144. Pu, F., Chen, N., & Xue, S. (2016). Calcium intake, calcium homeostasis and health. Food Science and Human Wellness, 5(1), 8–16. https://doi.org/10.1016/j.fshw.2016.01.001

    Article  Google Scholar 

  145. Bove-Fenderson, E., & Mannstadt, M. (2018). Hypocalcemic disorders. Best Practice & Research. Clinical Endocrinology & Metabolism, 32(5), 639–656. https://doi.org/10.1016/j.beem.2018.05.006

    Article  Google Scholar 

  146. Castro-Quezada, I., Román-Viñas, B., & Serra-Majem, L. (2014). The Mediterranean diet and nutritional adequacy: A review. Nutrients, 6(1), 231–248. https://doi.org/10.3390/nu6010231

    Article  PubMed  PubMed Central  Google Scholar 

  147. Biesalski, H. K., & Tinz, J. (2017). Multivitamin/mineral supplements: Rationale and safety—A systematic review. Nutrition, 33, 76–82. https://doi.org/10.1016/j.nut.2016.02.013

    Article  PubMed  Google Scholar 

  148. Misner, B. (2006). Food alone may not provide sufficient micronutrients for preventing deficiency. Journal of the International Society of Sports Nutrition, 3(1), 51. https://doi.org/10.1186/1550-2783-3-1-51

    Article  PubMed  PubMed Central  Google Scholar 

  149. Calton, J. B. (2010). Prevalence of micronutrient deficiency in popular diet plans. Journal of the International Society of Sports Nutrition, 7(1), 24. https://doi.org/10.1186/1550-2783-7-24

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lugo, J. P., Saiyed, Z. M., & Lane, N. E. (2016). Efficacy and tolerability of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: A multicenter randomized, double-blind, placebo-controlled study. Nutrition Journal, 15, 14. https://doi.org/10.1186/s12937-016-0130-8

    Article  PubMed  PubMed Central  Google Scholar 

  151. Crowley, D. C., Lau, F. C., Sharma, P., Evans, M., Guthrie, N., Bagchi, M., et al. (2009). Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: A clinical trial. International Journal of Medical Sciences, 6(6), 312–321. https://doi.org/10.7150/ijms.6.312

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., et al. (2016). Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in Retinal and Eye Research, 50, 34–66. https://doi.org/10.1016/j.preteyeres.2015.10.003

    Article  PubMed  Google Scholar 

  153. Abdel-Aal, E.-S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169–1185. https://doi.org/10.3390/nu5041169

    Article  PubMed  PubMed Central  Google Scholar 

  154. Singh, S., McGuinness, M. B., Anderson, A. J., & Downie, L. E. (2022). Interventions for the management of xomputer vision syndrome: A systematic review and meta-analysis. Ophthalmology, 129(10), 1192–1215. https://doi.org/10.1016/j.ophtha.2022.05.009

    Article  PubMed  Google Scholar 

  155. Patted, P. G., Masareddy, R. S., Patil, A. S., Kanabargi, R. R., & Bhat, C. T. (2024). Omega-3 fatty acids: A comprehensive scientific review of their sources, functions and health benefits. Future Journal of Pharmaceutical Sciences, 10(1), 94. https://doi.org/10.1186/s43094-024-00667-5

    Article  Google Scholar 

  156. Lem, D. W., Gierhart, D. L., & Davey, P. G. (2022). Can nutrition play a role in ameliorating digital eye strain? Nutrients, 14(19). https://doi.org/10.3390/nu14194005

  157. Epitropoulos, A. T., Donnenfeld, E. D., Shah, Z. A., Holland, E. J., Gross, M., Faulkner, W. J., et al. (2016). Effect of oral re-esterified Omega-3 nutritional supplementation on dry eyes. Cornea, 35(9), 1185–1191. https://doi.org/10.1097/ico.0000000000000940

    Article  PubMed  PubMed Central  Google Scholar 

  158. Wang, W. X., & Ko, M. L. (2023). Efficacy of Omega-3 intake in managing dry eye disease: A systematic review and meta-analysis of randomized controlled trials. Journal of Clinical Medicine, 12(22). https://doi.org/10.3390/jcm12227026

  159. Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17). https://doi.org/10.3390/molecules25173809

  160. Khoo, H. E., Ng, H. S., Yap, W. S., Goh, H. J. H., & Yim, H. S. (2019). Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants (Basel), 8(4). https://doi.org/10.3390/antiox8040085

  161. Noriega-González, D. C., Drobnic, F., Caballero-García, A., Roche, E., Perez-Valdecantos, D., & Córdova, A. (2022). Effect of vitamin C on tendinopathy recovery: A scoping review. Nutrients, 14(13). https://doi.org/10.3390/nu14132663

  162. Close, G. L., Sale, C., Baar, K., & Bermon, S. (2019). Nutrition for the prevention and treatment of injuries in track and field athletes. International Journal of Sport Nutrition and Exercise Metabolism, 29(2), 189–197. https://doi.org/10.1123/ijsnem.2018-0290

    Article  PubMed  Google Scholar 

  163. Farup, J., Rahbek, S. K., Vendelbo, M. H., Matzon, A., Hindhede, J., Bejder, A., et al. (2014). Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scandinavian Journal of Medicine & Science in Sports, 24(5), 788–798. https://doi.org/10.1111/sms.12083

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the esports team representatives who contributed their insights and data to this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribeiro, F.J., Cymbron, F., Couto, P.A., Jorge, J. (2025). Physical Health and Nutrition for Esports Athletes. In: Arslan, S. (eds) Esports Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-031-99625-2_3

Download citation

Keywords

Publish with us

Policies and ethics