Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Hydration Strategies for Esports Performance

  • Chapter
  • First Online:
Esports Nutrition
  • 93 Accesses

Abstract

Hydration is an integral component of any athlete’s training and preparation for competition. Maintaining proper hydration is imperative for nutrient delivery, adequate blood flow and plasma volume maintenance, cardiac function, electrolyte and osmolality control and balance, renal and gastrointestinal function, thermoregulation, and cognitive function. On average, adults should consume at least 2–3 L of fluids per day. Esports competition necessitates maintaining proper hydration due to the extended duration of gameplay sessions and the requirement for enhanced reaction time, mental processing, psychomotor vigilance, and long- and short-term working memory that are needed to guarantee competitive success. Neurons rely on appropriate intracellular and extracellular fluid balance and can be perturbed when inadequate fluids are ingested throughout the day. It is estimated that 15.8% of the adults aged 20–29 (the average age of Esports competitors) in the United States are habitually dehydrated with 40% exhibiting blood plasma hypertonicity (~300 mmol/L), thus showing that a subset of the competitive gamers in the United States are not reaching optimal gaming performance due to dehydration. Evidence from research trials suggests that most competitive gamers are at mild, serious, or significant dehydration during live competitive settings. However, another study suggested that most elite Egamer athletes do attain adequate daily water intake, based on surveys and nutrition analysis. Though some evidence does exist assessing the status of hydration in Egamers, not enough research has been conducted to portray the full scope of hydration tactics among Esports competitors. This chapter is intended to serve as an overview of the science behind hydration and enhancing cognitive function in Egamers, convey the state of the literature on research that has examined hydration strategies that affect video gaming performance, and offer hydration strategy recommendations based on suggestions from internationally accredited bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BP:

blood pressure

CSF:

cerebrospinal fluid

CVS:

computer vision syndrome

HR:

heart rate

K+:

potassium

Na+:

sodium

RAAS:

renin angiotensin aldosterone system

WHO:

World Health Organization

References

  1. Diringer, M. Neurologic manifestations of major electrolyte abnormalities. (0072–9752 (Print)).

    Google Scholar 

  2. Mitchell, H., Hamilton, T., Steggerda, F., et al. (1945). The chemical composition of the adult human body and its bearing on the biochemistry of growth. Journal of Biological Chemistry, 158(3), 625–637.

    Article  Google Scholar 

  3. Go, K. (1997). The normal and pathological physiology of brain water. In Advances and technical standards in neurosurgery (pp. 47–142).

    Chapter  Google Scholar 

  4. Telano, L. N., & Baker, S. (2023). Physiology, cerebrospinal fluid national library of medicine. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519007/#:~:text=CSF%20assists%20the%20brain%20by,the%20brain%20against%20the%20skull.

  5. Damkier, H. H., Brown Pd Fau-Praetorius, J., & Praetorius, J. Epithelial pathways in choroid plexus electrolyte transport. (1548–9221 (Electronic)).

    Google Scholar 

  6. Damkier, H. H., Fau-Brown, P. D., Brown Pd Fau-Praetorius, J., & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. (1522–1210 (Electronic)).

    Google Scholar 

  7. Zhang, N., Zhang, J., Du, S., et al. (2022). Dehydration and rehydration affect brain regional density and homogeneity among young male adults, determined via magnetic resonance imaging: A pilot self-control trial. Frontiers in Nutrition, 9, 906088.

    Article  PubMed  PubMed Central  Google Scholar 

  8. MacAulay, N. (2021). Molecular mechanisms of brain water transport. Nature Reviews Neuroscience, 22(6), 326–344.

    Article  PubMed  Google Scholar 

  9. Patel, S., Rauf, A., Khan, H., et al. (2017). Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomedicine & Pharmacotherapy, 94, 317–325.

    Article  Google Scholar 

  10. Jackson, L., Eldahshan, W., Fagan, S. C., et al. Within the brain: The renin angiotensin system. LID - https://doi.org/10.3390/ijms19030876 LID - 876. (1422–0067 (Electronic)).

  11. Mascolo, A., Sessa, M., Scavone, C., et al. (2017). New and old roles of the peripheral and brain renin–angiotensin–aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. International Journal of Cardiology, 227, 734–742.

    Article  PubMed  Google Scholar 

  12. Suárez, V., Picotin, R., Fassbender, R., et al. (2024). Chronic hyponatremia and brain structure and function before and after treatment. American Journal of Kidney Diseases, 84(1), 38–48.e1.

    Article  PubMed  Google Scholar 

  13. Brinkkoetter, P. T., Grundmann, F., Ghassabeh, P. J., et al. (2019). Impact of resolution of hyponatremia on neurocognitive and motor performance in geriatric patients. Scientific Reports, 9(1), 12526.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gunathilake, R., Oldmeadow, C., McEvoy, M., et al. (2013). Mild hyponatremia is associated with impaired cognition and falls in community-dwelling older persons. Journal of the American Geriatrics Society, 61(10), 1838–1839.

    Article  PubMed  Google Scholar 

  15. Wittbrodt, M. T., & Millard-Stafford, M. (2018). Dehydration impairs cognitive performance: A meta-analysis. Medicine and Science in Sports and Exercise, 50(11), 2360–2368.

    Article  PubMed  Google Scholar 

  16. Hooper, L., Bunn, D. K., Abdelhamid, A., et al. (2016). Water-loss (intracellular) dehydration assessed using urinary tests: How well do they work? Diagnostic accuracy in older people1, 2, 3. The American Journal of Clinical Nutrition, 104(1), 121–131.

    Article  PubMed  Google Scholar 

  17. Ganio, M. S., Armstrong, L. E., Casa, D. J., et al. (2011). Mild dehydration impairs cognitive performance and mood of men. British Journal of Nutrition, 106(10), 1535–1543.

    Article  PubMed  Google Scholar 

  18. Zhang, N., Du, S. M., Zhang, J. F., et al. (2019). Effects of dehydration and rehydration on cognitive performance and mood among male college students in Cangzhou, China: A self-controlled trial. International Journal of Environmental Research and Public Health, 16(11), 1891.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bar-David, Y., Urkin, J., & Kozminsky, E. (2005). The effect of voluntary dehydration on cognitive functions of elementary school children. Acta Paediatrica, 94(11), 1667–1673.

    Article  PubMed  Google Scholar 

  20. Patsalos, O. C., & Thoma, V. (2020). Water supplementation after dehydration improves judgment and decision-making performance. Psychological Research Psychologische Forschung, 84(5), 1223–1234.

    Article  PubMed  Google Scholar 

  21. Irwin, C., Leveritt, M., Shum, D., et al. (2013). The effects of dehydration, moderate alcohol consumption, and rehydration on cognitive functions. Alcohol, 47(3), 203–213.

    Article  PubMed  Google Scholar 

  22. Cian, C., Koulmann, N., Barraud, P., et al. (2000). Influences of variations in body hydration on cognitive function: Effect of hyperhydration, heat stress, and exercise-induced dehydration. Journal of Psychophysiology, 14(1), 29.

    Article  Google Scholar 

  23. Fadda, R., Rapinett, G., Grathwohl, D., et al. (2012). Effects of drinking supplementary water at school on cognitive performance in children. Appetite, 59(3), 730–737.

    Article  PubMed  Google Scholar 

  24. Lindseth, P. D., Lindseth, G. N., Petros, T. V., et al. (2013). Effects of hydration on cognitive function of pilots. Military Medicine, 178(7), 792–798.

    Article  PubMed  Google Scholar 

  25. Falcone, P., Tai, C., Carson, L., et al. (2017). The effect of mild dehydration induced by heat and exercise on cognitive functiona. Psychology and Cognitive Sciences, 3(1), 17–23.

    Article  Google Scholar 

  26. Goodman, S. P., Moreland, A. T., & Marino, F. E. (2019). The effect of active hypohydration on cognitive function: A systematic review and meta-analysis. Physiology & Behavior, 204, 297–308.

    Article  Google Scholar 

  27. Szinnai, G., Schachinger, H., Arnaud, M. J., et al. (2005). Effect of water deprivation on cognitive-motor performance in healthy men and women. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289(1), R275–R280.

    Article  PubMed  Google Scholar 

  28. Adam, G. E., Carter, R., III, Cheuvront, S. N., et al. (2008). Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiology & Behavior, 93(4–5), 748–756.

    Article  Google Scholar 

  29. D'anci, K. E., Mahoney, C. R., Vibhakar, A., et al. (2009). Voluntary dehydration and cognitive performance in trained college athletes. Perceptual and Motor Skills, 109(1), 251–269.

    Article  PubMed  Google Scholar 

  30. Smith, M. F., Newell, A. J., & Baker, M. R. (2012). Effect of acute mild dehydration on cognitive-motor performance in golf. The Journal of Strength & Conditioning Research, 26(11), 3075–3080.

    Article  Google Scholar 

  31. Irwin, C., Campagnolo, N., Iudakhina, E., et al. (2018). Effects of acute exercise, dehydration and rehydration on cognitive function in well-trained athletes. Journal of Ssports Sciences, 36(3), 247–255.

    Article  Google Scholar 

  32. MacLeod, H., Cooper, S., Bandelow, S., et al. (2018). Effects of heat stress and dehydration on cognitive function in elite female field hockey players. BMC Sports Science, Medicine and Rehabilitation, 10, 1–13.

    Article  Google Scholar 

  33. Dube, A., Gouws, C., & Breukelman, G. (2022). Effects of hypohydration and fluid balance in athletes’ cognitive performance: A systematic review. African Health Sciences, 22(1), 367–376.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Edmonds, C. J., Foglia, E., Booth, P., et al. (2021). Dehydration in older people: A systematic review of the effects of dehydration on health outcomes, healthcare costs and cognitive performance. Archives of Gerontology and Geriatrics, 95, 104380.

    Article  PubMed  Google Scholar 

  35. Hooper, L. (2016). Why, oh why, are so many older adults not drinking enough fluid? Journal of the Academy of Nutrition and Dietetics, 116(5), 774–778.

    Article  PubMed  Google Scholar 

  36. McCrow, J., Morton, M., Travers, C., et al. (2016). Associations between dehydration, cognitive impairment, and frailty in older hospitalized patients: An exploratory study. Journal of Gerontological Nursing, 42(5), 19–27.

    Article  PubMed  Google Scholar 

  37. Suhr, J. A., Hall, J., Patterson, S. M., et al. (2004). The relation of hydration status to cognitive performance in healthy older adults. International Journal of Psychophysiology, 53(2), 121–125.

    Article  PubMed  Google Scholar 

  38. Suhr, J., Patterson, S., Austin, A., et al. (2010). The relation of hydration status to declarative memory and working memory in older adults. The Journal of Nutrition, Health & Aging, 14, 840–843.

    Article  Google Scholar 

  39. Krarup, K. B., Riis, J., Mørk, M., et al. Biochemical changes in healthy adult male gamers during long gaming sessions. Available at SSRN 4207668.

    Google Scholar 

  40. Seal, A. D., Bardis, C. N., Gavrieli, A., et al. (2017). Coffee with high but not low caffeine content augments fluid and electrolyte excretion at rest [Original Research]. Frontiers in Nutrition, 4.

    Google Scholar 

  41. Ribeiro, F., Teixeira, R., & Poínhos, R. (2024). Hydration status of esports players in a live competition. Science & Sports, 39(7), 581–587.

    Article  Google Scholar 

  42. Goulart, J. B., Aitken, L. S., Siddiqui, S., et al. (2023). Nutrition, lifestyle, and cognitive performance in esport athletes. Frontiers in Nutrition, 10, 1120303.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lam, A. T., Perera, T. P., Quirante, K. B. A., et al. (2020). E-athletes’ lifestyle behaviors, physical activity habits, and overall health and wellbeing: A systematic review. Physical Therapy Reviews, 25(5–6), 449–461.

    Article  Google Scholar 

  44. Tang, C., Zelenak, C., Völkl, J., et al. (2011). Hydration-sensitive gene expression in brain. Cellular Physiology and Biochemistry, 27(6), 757–768.

    Article  PubMed  Google Scholar 

  45. Kempton, M. J., Ettinger, U., Schmechtig, A., et al. (2009). Effects of acute dehydration on brain morphology in healthy humans. Human Brain Mapping, 30(1), 291–298.

    Article  PubMed  Google Scholar 

  46. Sherwin, J. C., Kokavec, J., & Thornton, S. N. (2015). Hydration, fluid regulation and the eye: In health and disease. Clinical & Experimental Ophthalmology, 43(8), 749–764.

    Article  Google Scholar 

  47. Walsh, N. P., Fortes, M. B., Raymond-Barker, P., et al. (2012). Is whole-body hydration an important consideration in dry eye? Investigative Ophthalmology & Visual Science, 53(10), 6622–6627.

    Article  Google Scholar 

  48. Willshire, C., Bron, A. J., Gaffney, E. A., et al. (2018). Basal tear osmolarity as a metric to estimate body hydration and dry eye severity. Progress in Retinal and Eye Research, 64, 56–64.

    Article  PubMed  Google Scholar 

  49. Institute TE. Game over for the eyes: The link between excessive gaming and chronic dry eye. Available from: https://www.salusuhealth.com/news/2023/07/game-over-for-eyes-the-link-between-excessive-gaming-and-chronic-dry-eye.html

  50. Shah, M., Natarajan, S. B., & Ahmad, N. (2025). Excessive screen time exposure leads to dry eyes and inflammatory conjunctivitis in children. Irish Journal of Medical Science (1971-), 1–6.

    Google Scholar 

  51. Chidi-Egboka, N. C., Jalbert, I., & Golebiowski, B. (2023). Smartphone gaming induces dry eye symptoms and reduces blinking in school-aged children. Eye, 37(7), 1342–1349.

    Article  PubMed  Google Scholar 

  52. Kósa, G., Feher, G., Horvath, L., et al. (2022). Prevalence and risk factors of problematic internet use among Hungarian adult recreational esports players. International Journal of Environmental Research and Public Health, 19(6), 3204.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shen, Y., & Cicchella, A. (2023). Health consequences of intensive E-gaming: A systematic review. International Journal of Environmental Research and Public Health, 20(3), 1968.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Argilés, M., Quevedo-Junyent, L., & Erickson, G. (2022). Topical review: Optometric considerations in sports versus E-sports. Perceptual and Motor Skills, 129(3), 731–746.

    Article  PubMed  Google Scholar 

  55. Gong, D., Ma, W., Liu, T., et al. (2019). Electronic-sports experience related to functional enhancement in central executive and default mode areas. Neural Plasticity, 2019(1), 1940123.

    PubMed  PubMed Central  Google Scholar 

  56. Blehm, C., Vishnu, S., Khattak, A., et al. (2005). Computer vision syndrome: A review. Survey of Ophthalmology, 50(3), 253–262.

    Article  PubMed  Google Scholar 

  57. Rosenfield, M. (2011). Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic and Physiological Optics, 31(5), 502–515.

    Article  PubMed  Google Scholar 

  58. Siervo, M., Sabatini, S., Fewtrell, M., et al. (2013). Acute effects of violent video-game playing on blood pressure and appetite perception in normal-weight young men: A randomized controlled trial. European Journal of Clinical Nutrition, 67(12), 1322–1324.

    Article  PubMed  Google Scholar 

  59. Goldfield, G. S., Kenny, G. P., Hadjiyannakis, S., et al. (2011). Video game playing is independently associated with blood pressure and lipids in overweight and obese adolescents. PLoS One, 6(11), e26643.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rossoni, A., Vecchiato, M., Brugin, E., et al. (2023). The eSports medicine: Pre-participation screening and injuries management—An update. Sports, 11(2), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clemenson, G. D., & Stark, C. E. (2015). Virtual environmental enrichment through video games improves hippocampal-associated memory. Journal of Neuroscience, 35(49), 16116–16125.

    Article  PubMed  Google Scholar 

  62. Watanabe, K., Saijo, N., Minami, S., et al. (2021). The effects of competitive and interactive play on physiological state in professional esports players. Heliyon, 7(4), e06844.

    Article  PubMed  PubMed Central  Google Scholar 

  63. ValladÃo, S. P., Middleton, J., & Andre, T. L. (2020). Esport: Fortnite acutely increases heart rate of young men. International Journal of Exercise Science, 13(6), 1217.

    PubMed  PubMed Central  Google Scholar 

  64. Lawley, C. M., Skinner, J. R., & Turner, C. (2019). Syncope due to ventricular arrhythmia triggered by electronic gaming. New England Journal of Medicine, 381(12), 1180–1181.

    Article  PubMed  Google Scholar 

  65. Priori, S. G., Wilde, A. A., Horie, M., et al. (2013). HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: Document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm, 10(12), 1932–1963.

    Article  PubMed  Google Scholar 

  66. Yamagata, K., Yamagata, L. M., & Abela, M. (2022). A review article of the cardiovascular sequalae in esport athletes: A cause for concern? Hellenic Journal of Cardiology, 68, 40–45.

    Article  PubMed  Google Scholar 

  67. Senay, L. C., Jr., & Christensen, M. L. (1965). Changes in blood plasma during progressive dehydration. Journal of Applied Physiology, 20(6), 1136–1140.

    Article  Google Scholar 

  68. Rosenblum, W., & Asofsky, R. (1967). Effects of dehydration on blood viscosity and on distribution of plasma proteins in experimental macroglobulinaemia. Nature, 216(5122), 1327–1328.

    Article  PubMed  Google Scholar 

  69. Watanabe, K., Stöhr, E. J., Akiyama, K., et al. (2020). Dehydration reduces stroke volume and cardiac output during exercise because of impaired cardiac filling and venous return, not left ventricular function. Physiological Reports, 8(11), e14433.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Coyle, E. F., & Gonzalez-Alonso, J. (2001). Cardiovascular drift during prolonged exercise: New perspectives. Exercise and Sport Sciences Reviews, 29(2), 88–92.

    PubMed  Google Scholar 

  71. Rabbitts, J., Strom, N., Sawyer, J., et al. (2009). Influence of endogenous angiotensin II on control of sympathetic nerve activity in human dehydration. The Journal of Physiology, 587(22), 5441–5449.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Caldwell, A. R., Tucker, M. A., Burchfield, J., et al. (2018). Hydration status influences the measurement of arterial stiffness. Clinical Physiology and Functional Imaging, 38(3), 447–454.

    Article  PubMed  Google Scholar 

  73. Arnaoutis, G., Kavouras, S. A., Stratakis, N., et al. (2017). The effect of hypohydration on endothelial function in young healthy adults. European Journal of Nutrition, 56, 1211–1217.

    Article  PubMed  Google Scholar 

  74. Dmitrieva, N. I., & Burg, M. B. (2015). Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PLoS One, 10(6), e0128870.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pluss, M. A., Novak, A. R., Bennett, K. J., et al. (2022). Examining the game-specific practice behaviors of professional and semi-professional esports players: A 52-week longitudinal study. Computers in Human Behavior, 137, 107421.

    Article  Google Scholar 

  76. Rudolf, K., Bickmann, P., Froböse, I., et al. (2020). Demographics and health behavior of video game and eSports players in Germany: The eSports study 2019. International Journal of Environmental Research and Public Health, 17(6), 1870.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Derave, W., De Clercq, D., Fau-Bouckaert, J., Bouckaert, J., Fau-Pannier, J. L., et al. The influence of exercise and dehydration on postural stability. (0014–0139 (Print)).

    Google Scholar 

  78. Howard, G., Bartram, J., Williams, A., et al. (2020). Domestic water quantity, service level and health.

    Google Scholar 

  79. Wilson, M., & Morley, J. (2003). Impaired cognitive function and mental performance in mild dehydration. European Journal of Clinical Nutrition, 57(2), S24–S29.

    Article  PubMed  Google Scholar 

  80. Zhang, Y., Coca, A., Casa, D. J., et al. (2015). Caffeine and diuresis during rest and exercise: A meta-analysis. Journal of Science and Medicine in Sport, 18(5), 569–574.

    Article  PubMed  Google Scholar 

  81. Maughan, R. J., & Griffin, J. (2003). Caffeine ingestion and fluid balance: A review. Journal of Human Nutrition and Dietetics, 16(6), 411–420.

    Article  PubMed  Google Scholar 

  82. Dias, J. C., Roti, M. W., Pumerantz, A. C., et al. (2005). Rehydration after exercise dehydration in heat: Effects of caffeine intake. Journal of Sport Rehabilitation, 14(4), 294–300.

    Article  Google Scholar 

  83. Ruxton, C. H., & Hart, V. A. (2011). Black tea is not significantly different from water in the maintenance of normal hydration in human subjects: Results from a randomised controlled trial. British Journal of Nutrition, 106(4), 588–595.

    Article  PubMed  Google Scholar 

  84. Massey, L. K., & Berg, T. A. (1985). The effect of dietary caffeine on urinary excretion of calcium, magnesium, phosphorus, sodium, potassium, chloride and zinc in healthy males. Nutrition Research, 5(11), 1281–1284.

    Article  Google Scholar 

  85. Nelson, M. D., Haykowsky, M. J., Stickland, M. K., et al. (2011). Reductions in cerebral blood flow during passive heat stress in humans: Partitioning the mechanisms. The Journal of Physiology, 589(16), 4053–4064.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709.

    Article  PubMed  Google Scholar 

  87. Maughan, R., Fenn, C., Gleeson, M., et al. (1987). Metabolic and circulatory responses to the ingestion of glucose polymer and glucose/electrolyte solutions during exercise in man. European Journal of Applied Physiology and Occupational Physiology, 56(3), 356–362.

    Article  PubMed  Google Scholar 

  88. Rosenbloom, C. (2012). Food and fluid guidelines before, during, and after exercise. Nutrition Today, 47(2), 63–69.

    Article  Google Scholar 

  89. Jeukendrup, A., & Gleeson, M. (2019). Sport nutrition. Human Kinetics.

    Google Scholar 

  90. Loo, D. D., Zeuthen, T., Chandy, G., et al. (1996). Cotransport of water by the Na+/glucose cotransporter. National Academy of Sciences of the United States of America, 93(23), 13367–13370.

    Article  Google Scholar 

  91. Wright, E. M., & Loo, D. D. (2000). Coupling between Na+, sugar, and water transport across the intestine. Annals of the New York Academy of Sciences, 915(1), 54–66.

    Article  PubMed  Google Scholar 

  92. Bonetti, D. L., Hopkins, W. G., & Jeukendrup, A. (2010). Effects of hypotonic and isotonic sports drinks on endurance performance and physiology. Sportscience, 14.

    Google Scholar 

  93. Díaz, Y. R., & Pérez, M. A. G. (2022). Isotonic sports drinks: Formulation and physiological effects of their consumption.

    Google Scholar 

  94. Sawka Mn Fau-Burke, L. M., Burke Lm Fau-Eichner, E. R., Eichner Er Fau-Maughan, R. J., et al. American College of Sports Medicine position stand. Exercise and fluid replacement. (0195–9131 (Print)).

    Google Scholar 

  95. Shirreffs, S. M., & Maughan, R. J. Restoration of fluid balance after exercise-induced dehydration: Effects of alcohol consumption. (8750–7587 (Print)).

    Google Scholar 

  96. Shirreffs, S. (2009). Hydration in sport and exercise: Water, sports drinks and other drinks. Nutrition Bulletin, 34(4), 374–379.

    Article  Google Scholar 

  97. Below, P. R., Mora-Rodriguez, R., Gonzalez-Alonso, J., et al. (1995). Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Medicine and Science in Sports and Exercise, 27(2), 200–210.

    Article  PubMed  Google Scholar 

  98. Mangi, M. A., Rehman, H., Rafique, M., et al. (2017). Energy drinks and the risk of cardiovascular disease: A review of current literature. Cureus, 9(6).

    Google Scholar 

  99. Szot, M., Karpęcka-Gałka, E., Dróżdż, R., et al. (Eds.). (2022). Can nutrients and dietary supplements potentially improve cognitive performance also in esports? Healthcare. MDPI.

    Google Scholar 

  100. Evans, C., Mekhail, V., Kaminski, J., et al. (2021). The effects of an energy drink on measures of cognition and physical performance. Journal of Exercise Physiology Online, 24(3), 75–82.

    Google Scholar 

  101. Valle, M. C., Couto-Pereira, N., Lampert, C., et al. (2018). Energy drinks and their component modulate attention, memory, and antioxidant defences in rats. European Journal of Nutrition, 57, 2501–2511.

    Article  PubMed  Google Scholar 

  102. Curry, K., & Stasio, M. J. (2009). The effects of energy drinks alone and with alcohol on neuropsychological functioning. Human Psychopharmacology: Clinical and Experimental, 24(6), 473–481.

    Article  PubMed  Google Scholar 

  103. Wesnes, K. A., Brooker, H., Watson, A. W., et al. (2017). Effects of the Red Bull energy drink on cognitive function and mood in healthy young volunteers. Journal of Psychopharmacology, 31(2), 211–221.

    Article  PubMed  Google Scholar 

  104. Adami, P. E., Koutlianos, N., Baggish, A., et al. (2022). Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: A position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. European Journal of Preventive Cardiology, 29(3), 559–575.

    Article  PubMed  Google Scholar 

  105. Ramírez-delaCruz, M., Esteban-García, P., Abián, P., et al. (2024). Effects of different doses of caffeine on cognitive performance in healthy physically active individuals. European Journal of Nutrition, 63(8), 3025–3035.

    Article  PubMed  Google Scholar 

  106. Rogers, P. J., Heatherley, S. V., Mullings, E. L., et al. (2013). Faster but not smarter: Effects of caffeine and caffeine withdrawal on alertness and performance. Psychopharmacology, 226, 229–240.

    Article  PubMed  Google Scholar 

  107. Wu, S. H., Chen, Y.C., Chen, C.H., et al. Caffeine supplementation improves the cognitive abilities and shooting performance of elite e-sports players: A crossover trial. (2045–2322 (Electronic)).

    Google Scholar 

  108. Thomas, C. Hydration 101 for gamers 2023. Available from: https://1-hp.org/blog/healthy-eating/hydration-101-for-gamers/

  109. Dickson, J., Weavers, H., Mitchell, N., et al. (2005). The effects of dehydration on brain volume-preliminary results. International Journal of Sports Medicine, 26(06), 481–485.

    Article  PubMed  Google Scholar 

  110. McKenzie, A. L., Munoz, C. X., & Armstrong, L. E. (2015). Accuracy of urine color to detect equal to or greater than 2% body mass loss in men. Journal of Athletic Training, 50(12), 1306–1309.

    Article  PubMed  PubMed Central  Google Scholar 

  111. McKenzie, A. L., Muñoz, C. X., Ellis, L. A., et al. (2017). Urine color as an indicator of urine concentration in pregnant and lactating women. European Journal of Nutrition, 56, 355–362.

    Article  PubMed  Google Scholar 

  112. Mentes, J. C., Wakefield, B., & Culp, K. (2006). Use of a urine color chart to monitor hydration status in nursing home residents. Biological Research for Nursing, 7(3), 197–203.

    Article  PubMed  Google Scholar 

  113. Kostelnik, S. B., Davy, K. P., Hedrick, V. E., et al. (2021). The validity of urine color as a hydration biomarker within the general adult population and athletes: A systematic review. Journal of the American College of Nutrition, 40(2), 172–179.

    Article  PubMed  Google Scholar 

  114. Armstrong, L. E., Maresh, C. M., Castellani, J. W., et al. (1994). Urinary indices of hydration status. International Journal of Sport Nutrition and Exercise Metabolism, 4(3), 265–279.

    Article  Google Scholar 

  115. Wyness, S. P., Hunsaker, J. J. H., Snow, T. M., et al. (2016). Evaluation and analytical validation of a handheld digital refractometer for urine specific gravity measurement. Practical Laboratory Medicine, 5, 65–74.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oppliger, R. A., Magnes, S. A., Popowski, L. A., et al. (2005). Accuracy of urine specific gravity and osmolality as indicators of hydration status. International Journal of Sport Nutrition and Exercise Metabolism, 15(3), 236–251.

    Article  PubMed  Google Scholar 

  117. Stover, E. A., Petrie, H. J., Passe, D., et al. (2006). Urine specific gravity in exercisers prior to physical training. Applied Physiology, Nutrition, and Metabolism, 31(3), 320–327.

    Article  PubMed  Google Scholar 

  118. Shaikh, N., Shope, M. F., & Kurs-Lasky, M. (2019). Urine specific gravity and the accuracy of urinalysis. Pediatrics, 144(5).

    Google Scholar 

  119. Perrier, E., Bottin, J., Vecchio, M., et al. (2017). Criterion values for urine-specific gravity and urine color representing adequate water intake in healthy adults. European Journal of Clinical Nutrition, 71(4), 561–563.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Soffner, M., Bickmann, P., Tholl, C., et al. (2023). Dietary behavior of video game players and esports players in Germany: A cross-sectional study. Journal of Health, Population and Nutrition, 42(1), 29.

    Article  PubMed  Google Scholar 

  121. Ribeiro, F. J. V. (2024). Chess and eSports nutrition: Dietary habits, lifestyles and hydration status.

    Google Scholar 

  122. Szot, M., Frączek, B., & Tyrała, F. (2023). Nutrition patterns of polish Esports players. Nutrients, 15(1), 149.

    Article  Google Scholar 

  123. Thomas, C. Stop listening to thirst: An exact hydration plan for serious Esports athletes 2021. Available from: https://gamerdiet.gg/2021/02/25/hydration/

  124. Thomas, C. Nutrient timing for Esports athletes 2021. Available from: https://gamerdiet.gg/2021/02/25/hydration/

  125. Kiff, J. The importance of hydration for gaming performance 2020. Available from: https://www.adamasesports.gg/blogs/the-importance-of-hydration-for-gaming-performance

  126. Bruno. The power of gaming hydration: Why you should stay hydrated while gaming. Available from: https://muggo.co/gaming-hydration/

  127. CreatineCornflakes. <h1 aria-describedby="feed-post-credit-bar-t3_kxcunc" aria-label="Post Title: Raising awareness of staying hydrated while gaming" class="font-semibold text-neutral-content-strong m-0 text-18 xs:text-24 mb-xs px-md xs:px-0 xs:mb-md overflow-hidden" id="post-title-t3_kxcunc" slot="title" style="margin: 0px 0px 1rem; font-size: 1.5rem; line-height: 1.75rem; font-family: -apple-system, "system-ui", "Segoe UI", Roboto, "Helvetica Neue", Arial, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", sans-serif; overflow: hidden; padding-left: 0px; padding-right: 0px; color: var(--color-neutral-content-strong);">Raising awareness of staying hydrated while gaming. why is it so important to have a glass of water next to you while gaming? What impact on my gameplay will staying hydrated have?these are my tips and facts on staying hydrated:Not staying hydrated might make you lightheaded and dizzyIt can be the difference maker of not using a skill correctlyNot drinking water will make you sleepyStaying hydrated will make you win poeSo what are you waiting for?ready to get things done?Get a glass of waterGet into your next gameOpen Generalchat and tell everyone "Remember to stay hydrated"Also if the pros can tweet out #stayhydrated it would make games much better. <button actioned="" class="button border-md flex flex-row justify-center items-center h-xl font-semibold relative text-12 button-secondary inline-flex items-center px-sm" data-post-click-location="comments-button" name="comments-action-button" rpl="" style="background-image: ; background-position-x: ; background-position-y: ; background-size: ; background-repeat: ; background-attachment: ; background-origin: ; background-clip: ; border-width: 0.125rem; border-radius: 999px; box-shadow: var(--button-shadow); cursor: pointer; display: inline-flex; font: var(--font-button-sm); height: var(--size-button-sm-h); outline-offset: 0px; overflow: hidden; padding-right: 0.75rem; padding-left: 0.75rem; text-overflow: ellipsis; text-wrap-mode: nowrap; --button-border-color: var(--button-border-color-default); --button-border-width: var(--button-border-width-default); --button-color-background: var(--button-color-background-default); --button-color-text: var(--button-color-text-default); --button-color-background-default: var(--color-button-secondary-background); --button-color-background-focus: var(--color-button-secondary-background-focus); --button-color-background-hover: var(--color-button-secondary-background-hover); --button-color-background-active: linear-gradient(var(--color-button-secondary-background-hover),var(--color-button-secondary-background-hover)); --button-color-background-disabled: var(--color-button-secondary-background-disabled); --button-color-background-activated: var(--color-button-secondary-background-activated); --button-color-text-default: var(--color-button-secondary-text); --button-color-text-disabled: var(--color-button-secondary-text-disabled); --button-color-text-activated: var(--color-button-secondary-text-activated); --button-border-color-default: var(--color-button-secondary-border); position: relative; flex-direction: row; align-items: center; justify-content: center;" type="button"><faceplate-screen-reader-content style="clip: rect(1px, 1px, 1px, 1px); clip-path: inset(50%); height: 1px; width: 1px; margin: -1px; overflow: hidden; padding: 0px; position: absolute;">Go to commen</faceplate-screen-reader-content>.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Broderick Dickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dickerson, B. (2025). Hydration Strategies for Esports Performance. In: Arslan, S. (eds) Esports Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-031-99625-2_4

Download citation

Keywords

Publish with us

Policies and ethics