Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Special Nutritional Considerations for Female and Special Populations in Esports

  • Chapter
  • First Online:
Esports Nutrition
  • 79 Accesses

Abstract

Competitive esports require cognitive performance, rapid reaction, and physical endurance, which makes nutrition a crucial factor. Cognitive performance has been correlated with the intake of nutrients such as magnesium, zinc, selenium, and vitamins B6 and B12. Calcium and vitamin D deficiencies have also been linked to myotonic headaches, a common issue among female esports athletes (e-athletes). Additionally, the general esports community has a low vegetable intake, which leads to nutrient deficiencies. To optimize performance, a diet rich in dairy products, seafood, and balanced macronutrients is recommended over excessive reliance on energy drinks.

Women have unique hormonal profiles that influence energy metabolism, insulin sensitivity, immune responses, and muscle composition. Female esports athletes must balance their energy intake to avoid low energy availability (LEA), which can lead to menstrual irregularities, osteoporosis, and mental health issues such as anxiety and depression. Inadequate carbohydrate intake can impair cognitive function and muscle composition, while excessive intake may lead to blood sugar spikes and fatigue.

To prevent LEA and its associated risks, female esports athletes should maintain adequate energy intake, consume sufficient protein, and ensure proper nutrition. Addressing these challenges requires further research dedicated to female esports athletes to enhance their performance and overall well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DHA:

Docosahexaenoic acid

EA:

Energy availability

EPA:

Eicosapentaenoic acid

FAT:

Female athlete triad

FSH:

Follicle stimulating hormone

LEA:

Low energy availability

LH:

Luteinizing hormone

References

  1. Darvin, L., Holden, J., Wells, J., & Baker, T. (2021). Breaking the glass monitor: Examining the underrepresentation of women in esports environments. Sport Management Review, 24(3), 475–499. https://doi.org/10.1080/14413523.2021.1891746

    Article  Google Scholar 

  2. Interpret. (2025). Female esports watchers gain 6% in gender viewership share in last two years. https://interpret.la/female-esports-watchers-gain-6-in-gender-viewership-share-in-last-two-years/

  3. Hilbert, J. (2025). Gaming & gender: How inclusive are eSports? The sports integrity initiative. https://www.sportsintegrityinitiative.com/gaming-gender-how-inclusive-are-esports

    Google Scholar 

  4. Ribeiro, F. J., Teixeira, R., & Poínhos, R. (2023). Dietary habits and gaming behaviors of Portuguese and Brazilian esports players. Nutrients, 15(19), 4200. https://doi.org/10.3390/nu15194200

    Article  PubMed  PubMed Central  Google Scholar 

  5. Szot, M., Frączek, B., & Tyrała, F. (2022). Nutrition patterns of polish esports players. Nutrients, 15(1), 149. https://doi.org/10.3390/nu15010149

    Article  PubMed  PubMed Central  Google Scholar 

  6. Soffner, M., Bickmann, P., Tholl, C., & Froböse, I. (2023). Dietary behavior of video game players and esports players in Germany: A cross-sectional study. Journal of Health, Population, and Nutrition, 42(1), 29. https://doi.org/10.1186/s41043-023-00373-7. PMID: 37024994, PMCID: PMC10079142.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rogstad, E. T. (2022). Gender in eSports research: A literature review. European Journal for Sport and Society, 19(3), 195–213. https://doi.org/10.1080/16138171.2021.1930941

    Article  Google Scholar 

  8. Pizzo, A. D., Baker, B. J., Na, S., Lee, M. A., Kim, D., & Funk, D. C. (2018). eSport vs. sport: A comparison of spectator motives. Sport Marketing Quarterly, 27(2), 108. https://doi.org/10.32731/SMQ.272.062018.04

    Article  Google Scholar 

  9. Goulart, J. B., Aitken, L. S., Siddiqui, S., Cuevas, M., Cardenas, J., Beathard, K. M., & Riechman, S. E. (2023). Nutrition, lifestyle, and cognitive performance in esport athletes. Frontiers in Nutrition, 10, 1120303. https://doi.org/10.3389/fnut.2023.1120303. PMID: 37275641, PMCID: PMC10233150.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goulart, J., Aitken, L., Siddiqui, S., Cardenas, J., Cuevas, M., Riechman, S., & Beathard, K. (2022). Nutrition, vision, and cognition in sport: E-sport gaming athletes. Current Developments in Nutrition, 6 Supplement 1, 789, ISSN 2475-2991.. https://doi.org/10.1093/cdn/nzac064.008

    Article  Google Scholar 

  11. Mountjoy, M., Ackerman, K. E., Bailey, D. M., et al. (2023). 2023 International Olympic Committee’s (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). British Journal of Sports Medicine, 57(17), 1073–1097. https://doi.org/10.1136/bjsports-2023-106994

    Article  PubMed  Google Scholar 

  12. Miotto, P. M., McGlory, C., Holloway, T. M., Phillips, S. M., & Holloway, G. P. (2018). Sex differences in mitochondrial respiratory function in human skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 314(6), R909–R915. https://doi.org/10.1152/ajpregu.00025.2018

    Article  PubMed  PubMed Central  Google Scholar 

  13. Silaidos, C., Pilatus, U., Grewal, R., Matura, S., Lienerth, B., Pantel, J., & Eckert, G. P. (2018). Sex-associated differences in mitochondrial function in human peripheral blood mononuclear cells (PBMCs) and brain. Biology of Sex Differences, 9(1), 34. https://doi.org/10.1186/s13293-018-0193-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cortright, R. N., & Koves, T. R. (2000). Sex differences in substrate metabolism and energy homeostasis. Canadian Journal of Applied Physiology, 25(4), 288–311. https://doi.org/10.1139/h00-023

    Article  PubMed  Google Scholar 

  15. Hevener, A. L., Zhou, Z., Drew, B. G., & Ribas, V. (2017). The role of skeletal muscle estrogen receptors in metabolic homeostasis and insulin sensitivity. Advances in Experimental Medicine and Biology, 1043, 257–284. https://doi.org/10.1007/978-3-319-70178-3_13

    Article  PubMed  Google Scholar 

  16. Hevener, A. L., Ribas, V., Moore, T. M., & Zhou, Z. (2020). The impact of skeletal muscle ERalpha on mitochondrial function and metabolic health. Endocrinology, 161(2), bqz017. https://doi.org/10.1210/endocr/bqz017

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta, S., Nakabo, S., Blanco, L. P., et al. (2020). Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proceedings of the National Academy of Sciences of the United States of America, 117(28), 16481–16491. https://doi.org/10.1073/pnas.2003603117

    Article  PubMed  PubMed Central  Google Scholar 

  18. Genolet, O., Monaco, A. A., Dunkel, I., Boettcher, M., & Schulz, E. G. (2021). Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biology, 22(1), 110. https://doi.org/10.1186/s13059-021-02321-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Enns, D. L., & Tiidus, P. M. (2010). The influence of estrogen on skeletal muscle: Sex matters. Sports Medicine, 40(1), 41–58. https://doi.org/10.2165/11319760-000000000-00000

    Article  PubMed  Google Scholar 

  20. Haizlip, K. M., Harrison, B. C., & Leinwand, L. A. (2015). Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology, 30(1), 30–39.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gagnon, D., & Kenny, G. P. (2012). Does sex have an independent effect on thermoeffector responses during exercise in the heat? The Journal of Physiology, 590(23), 5963–5973. https://doi.org/10.1113/jphysiol.2012.240739

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yanovich, R., Ketko, I., & Charkoudian, N. (2020). Sex differences in human thermoregulation: Relevance for 2020 and beyond. Physiology (Bethesda), 35(3), 177–184. https://doi.org/10.1152/physiol.00035.2019

    Article  PubMed  Google Scholar 

  23. Wickham, K. A., McCarthy, D. G., Spriet, L. L., & Cheung, S. S. (2021). Sex differences in the physiological responses to exercise-induced dehydration: Consequences and mechanisms. Journal of Applied Physiology (1985), 131(2), 504–510. https://doi.org/10.1152/japplphysiol.00266.2021

    Article  Google Scholar 

  24. Giersch, G. E. W., Morrissey, M. C., Butler, C. R., et al. (2021). Sex differences in initial thermoregulatory response to dehydrated exercise in heat. Physiological Reports, 9(14):e14947, 10.14814/phy2.14947.

    Google Scholar 

  25. Hagobian, T. A., & Braun, B. (2010). Physical activity and hormonal regulation of appetite: Sex differences and weight control. Exercise and Sport Sciences Reviews, 38(1), 25–30. https://doi.org/10.1097/JES.0b013e3181c5cd98

    Article  PubMed  Google Scholar 

  26. Hazell, T. J., Townsend, L. K., Hallworth, J. R., Doan, J., & Copeland, J. L. (2017). Sex differences in the response of total PYY and GLP-1 to moderate-intensity continuous and sprint interval cycling exercise. European Journal of Applied Physiology, 117(3), 431–440. https://doi.org/10.1007/s00421-017-3547-7

    Article  PubMed  Google Scholar 

  27. Grubić Kezele, T., & Ćurko-Cofek, B. (2020). Age-related changes and sex-related differences in brain iron metabolism. Nutrients, 12(9), 2601. https://doi.org/10.3390/nu12092601

    Article  PubMed  PubMed Central  Google Scholar 

  28. Badenhorst, C. E., Goto, K., O’Brien, W. J., & Sims, S. (2021). Iron status in athletic females, a shift in perspective on an old paradigm. Journal of Sports Sciences, 39(14), 1565–1575. https://doi.org/10.1080/02640414.2021.1885782

    Article  PubMed  Google Scholar 

  29. McKay, A. K. A., Pyne, D. B., Burke, L. M., & Peeling, P. (2020). Iron metabolism: Interactions with energy and carbohydrate availability. Nutrients, 12(12), 3692. https://doi.org/10.3390/nu12123692

    Article  PubMed  PubMed Central  Google Scholar 

  30. Loucks, A. B. (2003). Energy availability, not body fatness, regulates reproductive function in women. Exercise and Sport Sciences Reviews, 31(3), 144–148. https://doi.org/10.1097/00003677-200307000-00008

    Article  PubMed  Google Scholar 

  31. Loucks, A. B., & Thuma, J. R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. The Journal of Clinical Endocrinology and Metabolism, 88(1), 297–311. https://doi.org/10.1210/jc.2002-020369

    Article  PubMed  Google Scholar 

  32. Loucks, A. B., & Verdun, M. (1998). Slow restoration of LH pulsatility by refeeding in energetically disrupted women. The American Journal of Physiology, 275(4), R1218–R1226. https://doi.org/10.1152/ajpregu.1998.275.4.R1218

    Article  PubMed  Google Scholar 

  33. Rambusch, J., Jakobsson, P., & Pargman, D. (2007, September 24). Exploring E-sports: A case study of game play in Counter-strike. In 3rd Digital Games Research Association International Conference: “Situated Play”, DiGRA 2007, Vol. 4, Tokyo. Digital Games Research Association (DiGRA).

    Google Scholar 

  34. Witkowski, E. (2012). On the digital playing field: How we “do sport” with networked computer games. Games and Culture, 7(5), 349–374. https://doi.org/10.1177/1555412012454222

    Article  Google Scholar 

  35. Jenny, S. E., Manning, R. D., Keiper, M. C., & Olrich, T. W. (2017). Virtual(ly) athletes: where eSports fit within the definition of “sport”. Quest, 69(1), 1–18. https://doi.org/10.1080/00336297.2016.1144517

    Article  Google Scholar 

  36. Martin-Niedecken, A. L., & Schättin, A. (2020). Let the Body’n’Brain games begin: toward innovative training approaches in eSports. Frontiers in Psychology, 11, 138. https://doi.org/10.3389/fpsyg.2020.00138

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang, Y.-K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport & Exercise Psychology, 31(5), 640–656. https://doi.org/10.1123/jsep.31.5.640

    Article  Google Scholar 

  38. Pensgaard, A. M., Sundgot-Borgen, J., Edwards, C., Jacobsen, A. U., & Mountjoy, M. (2023). Intersection of mental health issues and Relative Energy Deficiency in Sport (REDs): A narrative review by a subgroup of the IOC consensus on REDs. British Journal of Sports Medicine, 57(17), 1127–1135. https://doi.org/10.1136/bjsports-2023-106867. PMID: 37752005.

    Article  PubMed  Google Scholar 

  39. Kühn, S., Düzel, S., Colzato, L., et al. (2019). Food for thought: Association between dietary tyrosine and cognitive performance in younger and older adults. Psychological Research, 83(6), 1097–1106. https://doi.org/10.1007/s00426-017-0957-4

    Article  PubMed  Google Scholar 

  40. Suzuki, H., Yamashiro, D., Ogawa, S., et al. (2020). Intake of seven essential amino acids improves cognitive function and psychological and social function in middle-aged and older adults: A double-blind, randomized, placebo-controlled trial. Frontiers in Nutrition, 7, 586166. https://doi.org/10.3389/fnut.2020.586166

    Article  PubMed  PubMed Central  Google Scholar 

  41. Domaszewski, P. (2023). Gender differences in the frequency of positive and negative effects after acute caffeine consumption. Nutrients, 15(6), 1318. https://doi.org/10.3390/nu15061318

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nehlig, A. (2010). Is caffeine a cognitive enhancer? Journal of Alzheimer’s Disease, 20(Supplement 1), S85–S94. https://doi.org/10.3233/JAD-2010-091315

    Article  PubMed  Google Scholar 

  43. Sim, M., Garvican-Lewis, L. A., Cox, G. R., Govus, A., McKay, A. K. A., Stellingwerff, T., & Peeling, P. (2019). Iron considerations for the athlete: A narrative review. European Journal of Applied Physiology, 119(7), 1463–1478. https://doi.org/10.1007/s00421-019-04157-y. EPub. PMID: 31055680.

    Article  PubMed  Google Scholar 

  44. Huskisson, E., Maggini, S., & Ruf, M. (2007). The influence of micronutrients on cognitive function and performance. The Journal of International Medical Research, 35(1), 1–19. https://doi.org/10.1177/147323000703500101

    Article  PubMed  Google Scholar 

  45. Solberg, A., & Reikvam, H. (2023). Iron status and physical performance in athletes. Life (Basel), 13(10), 2007. https://doi.org/10.3390/life13102007. PMID: 37895389, PMCID: PMC10608302.

    Article  PubMed  Google Scholar 

  46. Tang, T., Cooper, R., & Kucek, J. (2021). Gendered esports: Predicting why men and women play and watch esports games. Journal of Broadcasting & Electronic Media, 65(3), 336–356. https://doi.org/10.1080/08838151.2021.1958815

    Article  Google Scholar 

  47. Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social relationships and mortality risk: A meta-analytic review. PLoS Medicine, 7(7), e1000316. https://doi.org/10.1371/journal.pmed.1000316. PMID: 20668659, PMCID: PMC2910600.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Matsui, T. (2024). Tsukuba FUTURE from judo to esports-do: The scientific way to mutual prosperity. Institute of Health and Sport Sciences. https://www.tsukuba.ac.jp/en/tsukuba-future/20240712143000.html

  49. Behnke, M., Gross, J. J., & Kaczmarek, L. D. (2022). The role of emotions in esports performance. Emotion, 22(5), 1059–1070. https://doi.org/10.1037/emo0000903, EPub 2020 Oct 29. PMID: 33119343.

    Article  PubMed  Google Scholar 

  50. Bonnaire, C., & Baptista, D. (2019). Internet gaming disorder in male and female young adults: The role of alexithymia, depression, anxiety and gaming type. Psychiatry Research, 272, 521–530. https://doi.org/10.1016/j.psychres.2018.12.158. Epub 2018 Dec 29. PMID: 30616119.

    Article  PubMed  Google Scholar 

  51. Marraudino, M., Bonaldo, B., Vitiello, B., Bergui, G. C., & Panzica, G. (2022). Sexual differences in Internet Gaming Disorder (IGD): From psychological features to neuroanatomical networks. Journal of Clinical Medicine, 11(4), 1018. https://doi.org/10.3390/jcm11041018. PMID: 35207293; PMCID: PMC8877403.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Burén, J., Nutley, S. B., & Thorell, L. B. (2023). Screen time and addictive use of gaming and social media in relation to health outcomes. Frontiers in Psychology, 14, 1258784. https://doi.org/10.3389/fpsyg.2023.1258784. PMID: 38192395; PMCID: PMC10773792.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Seino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seino, J. (2025). Special Nutritional Considerations for Female and Special Populations in Esports. In: Arslan, S. (eds) Esports Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-031-99625-2_8

Download citation

Keywords

Publish with us

Policies and ethics