Abstract
Infrared thermography presents some important advantages in the determination of skin temperature, as it is a safe, noninvasive, and noncontact technique of relatively easy use and with wide applications in the field of sports sciences. Like many other techniques, valid measurement in thermography requires following strict methodological steps from data acquisition to analysis and interpretation. In this chapter, we discuss the methodological recommendations that must be followed when acquiring thermic images, along with some practical examples and recommendations based on the current literature to ensure proper image acquisition and data processing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hillen B, Pfirrmann D, Nägele M, Simon P (2020) Infrared thermography in exercise physiology: the dawning of exercise radiomics. Sports Med (Auckland, N.Z.) 50(2):263–282. https://doi.org/10.1007/s40279-019-01210-w
Perpetuini D, Formenti D, Cardone D, Filippini C, Merla A (2021) Regions of interest selection and thermal imaging data analysis in sports and exercise science: a narrative review. Physiol Meas 42(8):08TR01. https://doi.org/10.1088/1361-6579/ac0fbd
Escamilla-Galindo V-L, Felipe JL, Alonso-Callejo A, Van-der-Horst R, de la Torre-Combarros A, Minafra P, Fernández-Muñoz D, Fernández-Cuevas I (2024) Return-to-play criteria based on infrared thermography during anterior cruciate ligament rehabilitation in football players. Biol Sport 42(2):161–167. https://doi.org/10.5114/biolsport.2025.144295
Gómez-Carmona P, Fernández-Cuevas I, Sillero-Quintana M, Arnaiz-Lastras J, Navandar A (2020) Infrared thermography protocol on reducing the incidence of soccer injuries. J Sport Rehabil:1–6. https://doi.org/10.1123/jsr.2019-0056
Hillen B, Andrés López D, Marzano-Felisatti JM, Sanchez-Jimenez JL, Ortiz C, de Anda RM, Nägele M, Salvador-Palmer MR, Pérez-Soriano P, Schömer E, Simon P, Priego-Quesada JI (2023) Acute physiological responses to a pyramidal exercise protocol and the associations with skin temperature variation in different body areas. J Therm Biol 115:103605. https://doi.org/10.1016/j.jtherbio.2023.103605
Machado ÁS, da Silva W, Priego-Quesada JI, Carpes FP (2023) Can infrared thermography serve as an alternative to assess cumulative fatigue in women? J Therm Biol 115:103612. https://doi.org/10.1016/j.jtherbio.2023.103612
Zarębska EA, Kusy K, Korman P, Słomińska EM, Zieliński J (2024) Exercise-induced changes in lower limbs skin temperature against plasma ATP among individuals with various type and level of physical activity. J Therm Biol 122:103877
Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. https://doi.org/10.1016/j.jtherbio.2014.04.002
Racinais S, Havenith G, Aylwin P, Ihsan M, Taylor L, Adami PE, Adamuz M-C, Alhammoud M, Alonso JM, Bouscaren N, Buitrago S, Cardinale M, van Dyk N, Esh CJ, Gomez-Ezeiza J, Garrandes F, Holtzhausen L, Labidi M, Lange G et al (2022) Association between thermal responses, medical events, performance, heat acclimation and health status in male and female elite athletes during the 2019 Doha World Athletics Championships. Br J Sports Med 56(8):439–445. https://doi.org/10.1136/bjsports-2021-104569
Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. https://doi.org/10.1113/expphysiol.2011.061002
de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189
Priego Quesada JI, Martínez Guillamón N, Cibrián O, de Anda RM et al (2015a) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. https://doi.org/10.1016/j.infrared.2015.07.008
van den Heuvel CJ, Ferguson SA, Dawson D, Gilbert SS (2003) Comparison of digital infrared thermal imaging (DITI) with contact thermometry: pilot data from a sleep research laboratory. Physiol Meas 24:717. https://doi.org/10.1088/0967-3334/24/3/308
Smith ADH, Crabtree DR, Bilzon JLJ, Walsh NP (2010) The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiol Meas 31:95–114. https://doi.org/10.1088/0967-3334/31/1/007
Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300
Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol:1–9
Priego-Quesada JI, Machado AS, Gil-Calvo M, Jimenez-Perez I, de Anda RMCO, Salvador Palmer R, Perez-Soriano P (2020b) A methodology to assess the effect of sweat on infrared thermography data after running: preliminary study. Infrared Phys Technol 109:103382. https://doi.org/10.1016/j.infrared.2020.103382
Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. https://doi.org/10.1088/0967-3334/32/10/003
Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715
Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235
dos Santos Bunn P, Elisa Koppke Miranda M, Inoue Rodrigues A, de Souza Sodré R, Borba Neves E, Bezerra da Silva E (2020) Infrared thermography and musculoskeletal injuries: a systematic review with meta-analysis. Infrared Phys Technol 103435. https://doi.org/10.1016/j.infrared.2020.103435
Fitzgerald A, Berentson-Shaw J (2012) Thermography as a screening and diagnostic tool: a systematic review. N Z Med J 125:80
Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859
Ramirez-GarciaLuna JL, Bartlett R, Arriaga-Caballero JE, Fraser RDJ, Saiko G (2022) Infrared thermography in wound care, surgery, and sports medicine: a review. Front Physiol 13. https://doi.org/10.3389/fphys.2022.838528
Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. https://doi.org/10.1016/S1888-7546(14)70053-X
Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016a) Effects of the cycling workload on core and local skin temperatures. Exp Thermal Fluid Sci 77:91–99. https://doi.org/10.1016/j.expthermflusci.2016.04.008
Priego Quesada JI, Carpes FP, Bini RR et al (2015b) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. https://doi.org/10.1016/j.jtherbio.2014.12.005
Coull NA, West AM, Hodder SG, Wheeler P, Havenith G (2021) Body mapping of regional sweat distribution in young and older males. Eur J Appl Physiol 121(1):109–125. https://doi.org/10.1007/s00421-020-04503-5
Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. https://doi.org/10.1016/j.jtherbio.2013.04.005
Aylwin P, Havenith G, Cardinale M, Lloyd A, Ihsan M, Taylor L, Adami PE, Alhammoud M, Alonso J-M, Bouscaren N, Buitrago S, Esh C, Gomez-Ezeiza J, Garrandes F, Labidi M, Lange G, Moussay S, Mtibaa K, Townsend N et al (2023) Thermoregulatory responses during road races in hot-humid conditions at the 2019 Athletics World Championships. J Appl Physiol 134(5):1300–1311. https://doi.org/10.1152/japplphysiol.00348.2022
Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215
Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. https://doi.org/10.1007/s10439-012-0718-x
Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144
Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol 71:28–55. https://doi.org/10.1016/j.infrared.2015.02.007
A Committee on Quality Control and Qualifications of the American Academy of Thermology (1986) Technical guidelines, Edition 2. Thermology 2:108–112
Schwartz RG (2006) Guidelines for neuromusculoskeletal thermography. Thermol Int 16:5–9
Moreira DG, Costello JT, Brito CJ, Adamczyk JG, Ammer K, Bach AJE, Costa CMA, Eglin C, Fernandes AA, Fernández-Cuevas I, Ferreira JJA, Formenti D, Fournet D, Havenith G, Howell K, Jung A, Kenny GP, Kolosovas-Machuca ES, Maley MJ et al (2017) Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J Therm Biol 69:155–162. https://doi.org/10.1016/j.jtherbio.2017.07.006
da Silva W, Machado ÁS, Kunzler MR, Jimenez-Perez I, Gil-Calvo M, Priego-Quesada JI, Carpes FP (2022) Reproducibility of skin temperature analyses by novice and experienced evaluators using infrared thermography. J Therm Biol 110:103345. https://doi.org/10.1016/j.jtherbio.2022.103345
Ludwig N, Formenti D, Gargano M, Alberti G (2014) Skin temperature evaluation by infrared thermography: comparison of image analysis methods. Infrared Phys Technol 62:1–6
Machado ÁS, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P (2021) Influence of infrared camera model and evaluator reproducibility in the assessment of skin temperature responses to physical exercise. J Therm Biol 98:102913. https://doi.org/10.1016/j.jtherbio.2021.102913
Machado ÁS, Cañada-Soriano M, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P, Priego-Quesada JI (2024) Distance and camera features measurements affect the detection of temperature asymmetries using infrared thermography. Quant InfraRed Thermogr J 21(2):69–81. https://doi.org/10.1080/17686733.2022.2143227
Maniar N, Bach AJE, Stewart IB, Costello JT (2015) The effect of using different regions of interest on local and mean skin temperature. J Therm Biol 49–50:33–38. https://doi.org/10.1016/j.jtherbio.2015.01.008
Marins JCB, Moreira DG, Cano SP et al (2014) Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35. https://doi.org/10.1016/j.infrared.2014.02.008
Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016b) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. https://doi.org/10.1016/j.infrared.2016.01.014
ISO (2008a) Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. TC121/SC3-IEC SC62D
ISO (2009) Medical electrical equipment-deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph. TR 13154:2009 ISO/TR 8-600
Bach AJ, Stewart IB, Minett GM, Costello JT (2015) Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol Meas 36:R27
Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. https://doi.org/10.1007/s00421-010-1744-8
Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. https://doi.org/10.3390/s141121950
Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71
Requena-Bueno L, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Perez-Soriano P (2020) Validation of ThermoHuman automatic thermographic software for assessing foot temperature before and after running. J Therm Biol 102639. https://doi.org/10.1016/j.jtherbio.2020.102639
Jimenez-Perez I, Gil-Calvo M, Priego-Quesada JI, Aparicio I, Pérez-Soriano P, Ortiz de Anda RMC (2020) Effect of prefabricated thermoformable foot orthoses on plantar surface temperature after running: a gender comparison. J Therm Biol 91:102612. https://doi.org/10.1016/j.jtherbio.2020.102612
Chudecka M, Lubkowska A (2015) Thermal maps of young women and men. Infrared Phys Technol 69:81–87. https://doi.org/10.1016/j.infrared.2015.01.012
Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. https://doi.org/10.1007/s10439-009-9809-8
Paolillo FR, Lins EC, Corazza AV et al (2013) Thermography applied during exercises with or without infrared light-emitting diode irradiation: individual and comparative analysis. Photomed Laser Surg 31:349–355. https://doi.org/10.1089/pho.2013.3505
Priego-Quesada JI, Pérez-Guarner A, Gandia-Soriano A, Oficial-Casado F, Galindo C, de Anda RMCO, Piñeiro-Ramos JD, Sánchez-Illana Á, Kuligowski J, Barbosa MAG, Vento M, Palmer RS (2020c) Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship With Perceptive, Performance, and Oxidative-Stress Biomarkers. Int J Sports Physiol Perform 1(aop):1–9. https://doi.org/10.1123/ijspp.2019-0963
Priego Quesada JI, Gil-Calvo M, Lucas-Cuevas AG, Aparicio I, Pérez-Soriano P (2017) Assessment of a mattress with phase change materials using a thermal and perception test. Exp Thermal Fluid Sci 81:358–363. https://doi.org/10.1016/j.expthermflusci.2016.10.024
Hillen B, López DA, Schömer E, Nägele M, Simon P (2022) Towards exercise radiomics: deep neural network-based automatic analysis of thermal images captured during exercise. IEEE J Biomed Health Inform 26(9):4530–4540
Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, Berlin, pp 223–237
Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14
Ring EFJ, Ammer K (2012) Infrared thermal imaging in medicine. Physiol Meas 33:R33–R46. https://doi.org/10.1088/0967-3334/33/3/R33
Ammer K (2005) Temperature readings from thermal images are less dependent on the number of pixels of the measurement area than on variation of room temperature. Thermol Int 15:131–133
Playà-Montmany N, Tattersall GJ (2021) Spot size, distance and emissivity errors in field applications of infrared thermography. Methods Ecol Evol 12(5):828–840. https://doi.org/10.1111/2041-210X.13563
de Deus Passos M, da Rocha AF (2022) Evaluation of infrared thermography with a portable camera as a diagnostic tool for peripheral arterial disease of the lower limbs compared with color Doppler ultrasonography. Arch Med Sci Atheroscler Dis 7:e66. https://doi.org/10.5114/amsad/150716
Li F, Wang M, Wang T, Wang X, Ma X, He H, Ma G, Zhao D, Yue Q, Wang P, Ma M (2023) Smartphone-based infrared thermography to assess progress in thoracic surgical incision healing: a preliminary study. Int Wound J 20(6):2000–2009. https://doi.org/10.1111/iwj.14063
Qu Y, Meng Y, Fan H, Xu RX (2022) Low-cost thermal imaging with machine learning for non-invasive diagnosis and therapeutic monitoring of pneumonia. Infrared Phys Technol 123:104201. https://doi.org/10.1016/j.infrared.2022.104201
Vardasca R (2019) Are the IR cameras FLIR ONE suitable for clinical applications? Thermol Int 23(3):95–102
Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628
Duc S, Arfaoui A, Polidori G, Bertucci W (2015) Efficiency and thermography in cycling during a graded exercise test. J Exerc Sports Orthop 2:1–8
Merla A, Iodice P, Tangherlini A et al (2005) Monitoring skin temperature in trained and untrained subjects throughout thermal video. In: Conference proceedings: annual interna- tional conference of the IEEE, Engineering in Medicine and Biology Society, vol 2, pp 1684–1686. https://doi.org/10.1109/IEMBS.2005.1616767
Priego-Quesada JI, De la Fuente C, Kunzler MR, Perez-Soriano P, Hervás-Marín D, Carpes FP (2020a) Relationship between skin temperature, electrical manifestations of muscle fatigue, and exercise-induced delayed onset muscle soreness for dynamic contractions: a preliminary study. Int J Environ Res Public Health 17(18). https://doi.org/10.3390/ijerph17186817
Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385
Vollmer M, Möllmann K-P (2011) Infrared thermal imaging: fundamentals, research and applications. Wiley, Weinheim
Riou O, Berrebi S, Bremond P (2004) Nonuniformity correction and thermal drift compensation of thermal infrared camera. Thermosense XXVI 5405:294–302. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5405/1/Nonuniformity-correction-and-thermal-drift-compensation-of-thermal-infrared-camera/10.1117/12.547807.short
Budzier H, Gerlach G (2015) Calibration of uncooled thermal infrared cameras. J Sens Sens Syst 4(1):187–197. https://doi.org/10.5194/jsss-4-187-2015
Tempelhahn A, Budzier H, Krause V, Gerlach G (2016) Shutter-less calibration of uncooled infrared cameras. J Sens Sens Syst 5(1):9–16. https://doi.org/10.5194/jsss-5-9-2016
Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring – A review. Infrared Phys Technol 60:35–55. https://doi.org/10.1016/j.infrared.2013.03.006
Gupta R, Breitenstein O (2006) Temperature drift correction for fast lock-in infrared thermography. In: Proceedings of the 21st European Photovoltaic Solar Energy Conference, pp 4–8. http://www-old.mpi-halle.mpg.de/mpi/publi/pdf/7199_06.pdf
Peeters J, Louarroudi E, De Greef D, Vanlanduit S, Dirckx JJJ, Steenackers G (2017) Time calibration of thermal rolling shutter infrared cameras. Infrared Phys Technol 80:145–152. https://doi.org/10.1016/j.infrared.2016.12.001
Ammer K (2006) Influence of imaging and object conditions on temperature readings from medical infrared images. Pol J Environ Stud (Submitted)
Ivanitsky GR, Khizhnyak EP, Deev AA, Khizhnyak LN (2006) Thermal imaging in medicine: a comparative study of infrared systems operating in wavelength ranges of 3–5 and 8–12 microm as applied to diagnosis. Dokl Biochem Biophys 407:59–63
Tkáčová M, Hudák R, Foffová P, Živčák J (2010) An importance of camera subject distance and angle in musculoskeletal applications of medical thermography. Acta Electrotech Inform 10:57–60
Tian X, Fang L, Liu W (2023) The influencing factors and an error correction method of the use of infrared thermography in human facial skin temperature. Build Environ 244:110736. https://doi.org/10.1016/j.buildenv.2023.110736
Aylwin PE, Racinais S, Bermon S, Lloyd A, Hodder S, Havenith G (2021) The use of infrared thermography for the dynamic measurement of skin temperature of moving athletes during competition; methodological issues. Physiol Meas 42(8):084004. https://doi.org/10.1088/1361-6579/ac1872
Dumke CL, Slivka DR, Cuddy JS et al (2015) The effect of environmental temperature on glucose and insulin after an oral glucose tolerance test in healthy young men. Wilderness Environ Med 26:335–342. https://doi.org/10.1016/j.wem.2015.03.002
Guéritée J, Tipton MJ (2015) The relationship between radiant heat, air temperature and thermal comfort at rest and exercise. Physiol Behav 139:378–385. https://doi.org/10.1016/j.physbeh.2014.11.064
Petrofsky JS, Lohman E, Suh HJ et al (2006) The effect of aging on conductive heat exchange in the skin at two environmental temperatures. Med Sci Monit 12:CR400–CR408
Maughan RJ, Otani H, Watson P (2011) Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur J Appl Physiol 112:2313–2321. https://doi.org/10.1007/s00421-011-2206-7
Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015c) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. https://doi.org/10.1016/j.jtherbio.2015.06.005
Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016c) Effect of saddle height on skin temperature measured in different days of cycling. Springerplus 5:205–214. https://doi.org/10.1186/s40064-016-1843-z
ISO (2008b) 18434-1:2008: condition monitoring and diagnostics of machines—thermoraphy—part 1: general procedures
Sanchez-Marin FJ, Calixto-Carrera S, Villaseñor-Mora C (2009) Novel approach to assess the emissivity of the human skin. J Biomed Opt 14:24006–24006–6. https://doi.org/10.1117/1.3086612
Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686
Togawa T (1989) Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature. Clin Phys Physiol Meas 10:39
James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. https://doi.org/10.1016/j.jtherbio.2014.08.010
Bernard V, Staffa E, Mornstein V, Bourek A (2013) Infrared camera assessment of skin surface temperature—effect of emissivity. Phys Med 29:583–591. https://doi.org/10.1016/j.ejmp.2012.09.003
Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. https://doi.org/10.1007/s10439-008-9512-1
Zontak A, Sideman S, Verbitsky O, Beyar R (1998) Dynamic thermography: analysis of hand temperature during exercise. Ann Biomed Eng 26:988–993
Pereira Franco VH, Vasquez-Bonilla AA, Sillero-Quintana M (2025) Influence of body position on skin temperature, heart rate, and blood pressure in active men. J Therm Biol 127:104009. https://doi.org/10.1016/j.jtherbio.2024.104009
Bertmaring I, Babski-Reeves K, Nussbaum MA (2008) Infrared imaging of the anterior deltoid during overhead static exertions. Ergonomics 51:1606–1619. https://doi.org/10.1080/00140130802216933
Houdas Y, Ring EFJ (1982) Temperature distribution. In: Human body temperature. Springer, berlin, pp 81–103
Chamberlain JM, Terndrup TE, Alexander DT et al (1995) Determination of normal ear temperature with an infrared emission detection thermometer. Ann Emerg Med 25:15–20. https://doi.org/10.1016/S0196-0644(95)70349-7
Smolander J, Härmä M, Lindgvist A et al (1993) Circadian variation in peripheral blood flow in relation to core temperature at rest. Eur J Appl Physiol 67:192–196. https://doi.org/10.1007/BF00376666
Costa CMA, Sillero-Quintana M, Piñonosa Cano S et al (2015) Daily oscillations of skin temperature in military personnel using thermography. J R Army Med Corps. https://doi.org/10.1136/jramc-2015-000462
Da Silva W, Godoy-López JR, Machado ÁS, Lemos AL, Sendra-Pérez C, Brejano MG, Carpes FP, Priego-Quesada JI (2024) Effect of different Volumes of exercise on skin temperature responses over the following 24 hours. J Therm Biol 123:103923
Marins JCB, Formenti D, Costa CMA et al (2015) Circadian and gender differences in skin temperature in militaries by thermography. Infrared Phys Technol 71:322–328. https://doi.org/10.1016/j.infrared.2015.05.008
Priego-Quesada JI, Catalá-Vilaplana I, Bermejo-Ruiz JL, Gandia-Soriano A, Pellicer-Chenoll MT, Encarnación-Martínez A, Ortiz C, de Anda R, Salvador-Palmer R (2022) Effect of 10 km run on lower limb skin temperature and thermal response after a cold-stress test over the following 24 h. J Therm Biol 105:103225. https://doi.org/10.1016/j.jtherbio.2022.103225
Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108
Novotny J, Rybarova S, Zacha D et al (2015) The influence of breaststroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng Biomech 17:121
Zaidi H, Fohanno S, Polidori G, Taiar R (2007) The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography. Acta Bioeng Biomech 9:47
van Ooijen AMJ, van Marken Lichtenbelt WD, Westerterp KR (2001) Individual differences in body temperature and the relation to energy expenditure: the influence of mild cold. J Therm Biol 26:455–459. https://doi.org/10.1016/S0306-4565(01)00060-2
Gagnon D, Kenny GP (2011) Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol 589:6205–6217. https://doi.org/10.1113/jphysiol.2011.219220
Karki A, Karppi P, Ekberg J, Selfe J (2004) A thermographic investigation of skin temperature changes in response to a thermal washout of the knee in healthy young adults. Thermol Int 14:137–141
Gagnon D, Jay O, Lemire B, Kenny GP (2008) Sex-related differences in evaporative heat loss: the importance of metabolic heat production. Eur J Appl Physiol 104:821–829. https://doi.org/10.1007/s00421-008-0837-0
Gonzalez RR (1985) Blanchard LA (1998) Thermoregulatory responses to cold transients: effects of menstrual cycle in resting women. J Appl Physiol Bethesda Md 85:543–553
Stachenfeld NS, Silva C, Keefe DL (2000) Estrogen modifies the temperature effects of progesterone. J Appl Physiol Bethesda Md (1985) 88:1643–1649
Bartelink ML, Wollersheim H, Theeuwes A et al (1990) Changes in skin blood flow during the menstrual cycle: the influence of the menstrual cycle on the peripheral circulation in healthy female volunteers. Clin Sci 78:527–532
do Nascimento Silva RK, Matias FL, Gonçalves AF, de Almeida Ferreira JJ, de Andrade PR (2023) Skin temperature of women: a prospective longitudinal study. J Therm Biol 118:103741. https://doi.org/10.1016/j.jtherbio.2023.103741
Niu HH, Lui PW, Hu JS et al (2001) Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed 64:459–468
Inbar O, Morris N, Epstein Y, Gass G (2004) Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males. Exp Physiol 89:691–700. https://doi.org/10.1113/expphysiol.2004.027979
Ho CW, Beard JL, Farrell PA et al (1997) Age, fitness, and regional blood flow during exercise in the heat. J Appl Physiol Bethesda Md 82:1126–1135
Stapleton JM, Poirier MP, Flouris AD et al (2015) Aging impairs heat loss, but when does it matter? J Appl Physiol Bethesda Md 1985 118:299–309. https://doi.org/10.1152/japplphysiol.00722.2014
Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. https://doi.org/10.1016/j.autneu.2016.03.001
Havenith G (2001) Human surface to mass ratio and body core temperature in exercise heat stress—a concept revisited. J Therm Biol 26:387–393. https://doi.org/10.1016/S0306-4565(01)00049-3
Du Bois D, Du Bois EF (1916) Clinical calorimetry: a formula to estimate the appropriate surface area if height and weight be known. Arch Intern Med 17:863–871
Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. https://doi.org/10.1016/j.jtherbio.2014.03.001
Korman P, Kusy K, Straburzyńska-Lupa A, Sillero-Quintana M, Zarębska E, Zieliński J (2024) Exploring the correlation of skin temperature and body composition in athletes undergoing exhaustive physical exercise. J Therm Biol 123:103918
Salamunes ACC, Stadnik AMW, Neves EB (2017) The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J Therm Biol 66:1–9. https://doi.org/10.1016/j.jtherbio.2017.03.006
Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. https://doi.org/10.3945/ajcn.2009.27567
Kumar P, Gaurav A, Rajnish RK, Sharma S, Kumar V, Aggarwal S, Patel S (2022) Applications of thermal imaging with infrared thermography in Orthopaedics. J Clin Orthop Trauma 24:101722. https://doi.org/10.1016/j.jcot.2021.101722
Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. https://doi.org/10.1088/0967-3334/29/4/007
Ichinose-Kuwahara T, Inoue Y, Iseki Y et al (2010) Sex differences in the effects of physical training on sweat gland responses during a graded exercise. Exp Physiol 95:1026–1032. https://doi.org/10.1113/expphysiol.2010.053710
Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96:822–828. https://doi.org/10.1113/expphysiol.2010.056176
Ring EF, Collins AJ, Bacon PA, Cosh JA (1974) Quantitation of thermography in arthritis using multi-isothermal analysis. II. Effect of nonsteroidal anti-inflammatory therapy on the thermographic index. Ann Rheum Dis 33:353
Ring EF, Engel J, Page-Thomas DP (1984) Thermologic methods in clinical pharmacology-skin temperature measurement in drug trials. Int J Clin Pharmacol Ther 22:20–24
Toshihiko U, Yoshiharu T, Atsuhiro M et al (1987) Application of thermography to the evaluation of the histamine skin test in man. J Pharmacol Methods 18:103–110
Wilczyński S (2015) The use of dynamic thermal analysis to distinguish between genuine and counterfeit drugs. Int J Pharm 490:16–21. https://doi.org/10.1016/j.ijpharm.2015.04.077
Hirai A, Tanabe M, Shido O (1991) Enhancement of finger blood flow response of postprandial human subjects to the increase in body temperature during exercise. Eur J Appl Physiol 62:221–227
Westerterp-Plantenga MS, Wouters L, ten Hoor F (1990) Deceleration in cumulative food intake curves, changes in body temperature and diet-induced thermogenesis. Physiol Behav 48:831–836
Kieser E, Dellimore K, Scheffer C et al (2015) Development of diagnostic sensors for infant dehydration assessment using optical methods. In: Conference proceedings: annual international conference of the IEEE, Engineering in Medicine and Biology Society, vol 2015, pp 5537–5540. https://doi.org/10.1109/EMBC.2015.7319646
Ammer K, Melnizky P, Rathkolb O (2003) Skin temperature after intake of sparkling wine, still wine or sparkling water. Thermol Int 13:99–102
Hughes JH, Henry RE, Daly MJ (1984) Influence of ethanol and ambient temperature on skin blood flow. Ann Emerg Med 13:597–600. https://doi.org/10.1016/S0196-0644(84)80282-6
Mannara G, Salvatori GC, Pizzuti GP (1993) Ethyl alcohol induced skin temperature changes evaluated by thermography. Preliminary results. Boll Della Soc Ital Biol Sper 69:587
Wolf R, Tüzün B, Tüzün Y (1999) Alcohol ingestion and the cutaneous vasculature1. Clin Dermatol 17:395–403. https://doi.org/10.1016/S0738-081X(99)00023-1
Koot P, Deurenberg P (1995) Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Ann Nutr Metab 39:135–142. https://doi.org/10.1159/000177854
Quinlan P, Lane J, Aspinall L (1997) Effects of hot tea, coffee and water ingestion on physiological responses and mood: the role of caffeine, water and beverage type. Psychopharmacology 134:164–173. https://doi.org/10.1007/s002130050438
Quinlan PT, Lane J, Moore KL et al (2000) The acute physiological and mood effects of tea and coffee: the role of caffeine level. Pharmacol Biochem Behav 66:19–28
Bornmyr S, Svensson H (1991) Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Clin Physiol 11:135–141
Gershon-Cohen J, Borden AGB, Hermel MB (1969) Thermography of extremities after smoking. Br J Radiol 42:189–191
Ijzerman RG, Serne EH, van Weissenbruch MM et al (2003) Cigarette smoking is associated with an acute impairment of microvascular function in humans. Clin Sci 104:247–252
Barnes RB (1963) Thermography of the human body. Science 140:870–877
Togawa T, Saito H (1994) Non-contact imaging of thermal properties of the skin. Physiol Meas 15:291. https://doi.org/10.1088/0967-3334/15/3/007
Connolly DAJ, Sayers SP, McHugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17:197–208
Ryu JH, Paik IY, Woo JH et al (2016) Impact of different running distances on muscle and lymphocyte DNA damage in amateur marathon runners. J Phys Ther Sci 28:450–455. https://doi.org/10.1589/jpts.28.450
Petersen B, Philipsen PA, Wulf HC (2014) Skin temperature during sunbathing–relevance for skin cancer. Photochem Photobiol Sci 13:1123–1125. https://doi.org/10.1039/c4pp00066h
Stokes JE, Leach KA, Main DCJ, Whay HR (2012) An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 193:674–678
Whay HR, Bell MJ, Main DCJ (2004) Validation of lame limb identification through thermal imaging. In: Proceedings of 13th international symposium and 5th conference of lameness rumen. Maribor Slovenija, pp 11–15
Formenti D, Ludwig N, Rossi A, Trecroci A, Alberti G, Gargano M, Merla A, Ammer K, Caumo A (2018) Is the maximum value in the region of interest a reliable indicator of skin temperature? Infrared Phys Technol 94:299–304
Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermog- raphy as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228
Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60
Nowakowski AZ (2006) Advances of quantitative IR-thermal imaging in medical diagnostics. Brain 10:3
Vainionpaa M, Tienhaara E-P, Raekallio M et al (2012) Thermographic imaging of the superficial temperature in racing greyhounds before and after the race. Sci World J. https://doi.org/10.1100/2012/182749
Haddad DS, Brioschi ML, Baladi MG, Arita ES (2016) A new evaluation of heat distribution on facial skin surface by infrared thermography. Dentomaxillofac Radiol 45:20150264. https://doi.org/10.1259/dmfr.20150264
Keramidas ME, Geladas ND, Mekjavic IB, Kounalakis SN (2013) Forearm-finger skin temperature gradient as an index of cutaneous perfusion during steady-state exercise. Clin Physiol Funct Imaging 33:400–404. https://doi.org/10.1111/cpf.12043
Taylor NAS, Tipton MJ, Kenny GP (2014) Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101. https://doi.org/10.1016/j.jtherbio.2014.10.006
Choi JK, Miki K, Sagawa S, Shiraki K (1997) Evaluation of mean skin temperature formulas by infrared thermography. Int J Biometeorol 41:68–75. https://doi.org/10.1007/s004840050056
Jimenez-Perez I, Gil-Calvo M, Vardasca R, Fernandes RJ, Vilas-Boas JP (2021) Pre-exercise skin temperature evolution is not related with 100 m front crawl performance. J Therm Biol 98:102926. https://doi.org/10.1016/j.jtherbio.2021.102926
Pérez-Guarner A, Priego-Quesada JI, Oficial-Casado F, Cibrián Ortiz de Anda RM, Carpes FP, Palmer RS (2019) Association between physiological stress and skin temperature response after a half marathon. Physiol Meas 40(3):034009–034019. https://doi.org/10.1088/1361-6579/ab0fdc
Haddad DS, Brioschi ML, Vardasca R et al (2014) Thermographic characterization of masticatory muscle regions in volunteers with and without myogenous temporomandibular disorder: preliminary results. Dentomaxillofac Radiol 43:20130440. https://doi.org/10.1259/dmfr.20130440
Sun P-C, Jao S-HE, Cheng C-K (2005) Assessing foot temperature using infrared thermography. Foot Ankle Int 26:847–853. https://doi.org/10.1177/107110070502601010
Verderber L, da Silva W, Aparicio-Aparicio I, Germano AMC, Carpes FP, Priego-Quesada JI (2024) Assessment of alternative metrics in the application of infrared thermography to detect muscle damage in sports. Physiol Meas 45(9):095014. https://doi.org/10.1088/1361-6579/ad7ad3
Bogomilsky S, Hoffer O, Shalmon G, Scheinowitz M (2022) Preliminary study of thermal density distribution and entropy analysis during cycling exercise stress test using infrared thermography. Sci Rep 12(1):14018. https://doi.org/10.1038/s41598-022-18233-5
Alburquerque Santana PV, Alvarez PD, Felipe da Costa Sena A, Serpa TK, de Assis MG, Pimenta EM, Costa HA, Sevilio de Oliveira Junior MN, Torres Cabido CE, Veneroso CE (2022) Relationship between infrared thermography and muscle damage markers in physically active men after plyometric exercise. J Therm Biol 104:103187. https://doi.org/10.1016/j.jtherbio.2022.103187
de Andrade Fernandes A, Marins JCB, de Andrade AGP, Albuquerque MR, Brito CJ, da Silva CD, do Valle MAAN, de Assis MG, Garcia ES, Pimenta EM (2024) Thermopixelgraphy: a new method for analyzing the skin temperature of the lower limbs through infrared thermography. J Therm Anal Calorim 149(22):12737–12745. https://doi.org/10.1007/s10973-024-13799-w
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Priego-Quesada, J.I., Kunzler, M.R., Carpes, F.P. (2025). Methodological Aspects of Infrared Thermography in Human Assessment. In: Priego-Quesada, J.I. (eds) Application of Infrared Thermography in Sports Science. Springer, Cham. https://doi.org/10.1007/978-3-031-93311-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-93311-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-93310-3
Online ISBN: 978-3-031-93311-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)