Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Methodological Aspects of Infrared Thermography in Human Assessment

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

Infrared thermography presents some important advantages in the determination of skin temperature, as it is a safe, noninvasive, and noncontact technique of relatively easy use and with wide applications in the field of sports sciences. Like many other techniques, valid measurement in thermography requires following strict methodological steps from data acquisition to analysis and interpretation. In this chapter, we discuss the methodological recommendations that must be followed when acquiring thermic images, along with some practical examples and recommendations based on the current literature to ensure proper image acquisition and data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hillen B, Pfirrmann D, Nägele M, Simon P (2020) Infrared thermography in exercise physiology: the dawning of exercise radiomics. Sports Med (Auckland, N.Z.) 50(2):263–282. https://doi.org/10.1007/s40279-019-01210-w

    Article  Google Scholar 

  2. Perpetuini D, Formenti D, Cardone D, Filippini C, Merla A (2021) Regions of interest selection and thermal imaging data analysis in sports and exercise science: a narrative review. Physiol Meas 42(8):08TR01. https://doi.org/10.1088/1361-6579/ac0fbd

    Article  Google Scholar 

  3. Escamilla-Galindo V-L, Felipe JL, Alonso-Callejo A, Van-der-Horst R, de la Torre-Combarros A, Minafra P, Fernández-Muñoz D, Fernández-Cuevas I (2024) Return-to-play criteria based on infrared thermography during anterior cruciate ligament rehabilitation in football players. Biol Sport 42(2):161–167. https://doi.org/10.5114/biolsport.2025.144295

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gómez-Carmona P, Fernández-Cuevas I, Sillero-Quintana M, Arnaiz-Lastras J, Navandar A (2020) Infrared thermography protocol on reducing the incidence of soccer injuries. J Sport Rehabil:1–6. https://doi.org/10.1123/jsr.2019-0056

  5. Hillen B, Andrés López D, Marzano-Felisatti JM, Sanchez-Jimenez JL, Ortiz C, de Anda RM, Nägele M, Salvador-Palmer MR, Pérez-Soriano P, Schömer E, Simon P, Priego-Quesada JI (2023) Acute physiological responses to a pyramidal exercise protocol and the associations with skin temperature variation in different body areas. J Therm Biol 115:103605. https://doi.org/10.1016/j.jtherbio.2023.103605

    Article  PubMed  Google Scholar 

  6. Machado ÁS, da Silva W, Priego-Quesada JI, Carpes FP (2023) Can infrared thermography serve as an alternative to assess cumulative fatigue in women? J Therm Biol 115:103612. https://doi.org/10.1016/j.jtherbio.2023.103612

    Article  PubMed  Google Scholar 

  7. Zarębska EA, Kusy K, Korman P, Słomińska EM, Zieliński J (2024) Exercise-induced changes in lower limbs skin temperature against plasma ATP among individuals with various type and level of physical activity. J Therm Biol 122:103877

    Article  PubMed  Google Scholar 

  8. Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. https://doi.org/10.1016/j.jtherbio.2014.04.002

    Article  PubMed  Google Scholar 

  9. Racinais S, Havenith G, Aylwin P, Ihsan M, Taylor L, Adami PE, Adamuz M-C, Alhammoud M, Alonso JM, Bouscaren N, Buitrago S, Cardinale M, van Dyk N, Esh CJ, Gomez-Ezeiza J, Garrandes F, Holtzhausen L, Labidi M, Lange G et al (2022) Association between thermal responses, medical events, performance, heat acclimation and health status in male and female elite athletes during the 2019 Doha World Athletics Championships. Br J Sports Med 56(8):439–445. https://doi.org/10.1136/bjsports-2021-104569

    Article  PubMed  Google Scholar 

  10. Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. https://doi.org/10.1113/expphysiol.2011.061002

    Article  PubMed  Google Scholar 

  11. de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189

    Article  Google Scholar 

  12. Priego Quesada JI, Martínez Guillamón N, Cibrián O, de Anda RM et al (2015a) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. https://doi.org/10.1016/j.infrared.2015.07.008

    Article  Google Scholar 

  13. van den Heuvel CJ, Ferguson SA, Dawson D, Gilbert SS (2003) Comparison of digital infrared thermal imaging (DITI) with contact thermometry: pilot data from a sleep research laboratory. Physiol Meas 24:717. https://doi.org/10.1088/0967-3334/24/3/308

    Article  PubMed  Google Scholar 

  14. Smith ADH, Crabtree DR, Bilzon JLJ, Walsh NP (2010) The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiol Meas 31:95–114. https://doi.org/10.1088/0967-3334/31/1/007

    Article  PubMed  Google Scholar 

  15. Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300

    Article  CAS  PubMed  Google Scholar 

  16. Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol:1–9

    Google Scholar 

  17. Priego-Quesada JI, Machado AS, Gil-Calvo M, Jimenez-Perez I, de Anda RMCO, Salvador Palmer R, Perez-Soriano P (2020b) A methodology to assess the effect of sweat on infrared thermography data after running: preliminary study. Infrared Phys Technol 109:103382. https://doi.org/10.1016/j.infrared.2020.103382

    Article  Google Scholar 

  18. Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. https://doi.org/10.1088/0967-3334/32/10/003

    Article  PubMed  Google Scholar 

  19. Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. dos Santos Bunn P, Elisa Koppke Miranda M, Inoue Rodrigues A, de Souza Sodré R, Borba Neves E, Bezerra da Silva E (2020) Infrared thermography and musculoskeletal injuries: a systematic review with meta-analysis. Infrared Phys Technol 103435. https://doi.org/10.1016/j.infrared.2020.103435

  22. Fitzgerald A, Berentson-Shaw J (2012) Thermography as a screening and diagnostic tool: a systematic review. N Z Med J 125:80

    PubMed  Google Scholar 

  23. Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859

    Article  CAS  Google Scholar 

  24. Ramirez-GarciaLuna JL, Bartlett R, Arriaga-Caballero JE, Fraser RDJ, Saiko G (2022) Infrared thermography in wound care, surgery, and sports medicine: a review. Front Physiol 13. https://doi.org/10.3389/fphys.2022.838528

  25. Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. https://doi.org/10.1016/S1888-7546(14)70053-X

    Article  Google Scholar 

  26. Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016a) Effects of the cycling workload on core and local skin temperatures. Exp Thermal Fluid Sci 77:91–99. https://doi.org/10.1016/j.expthermflusci.2016.04.008

    Article  Google Scholar 

  27. Priego Quesada JI, Carpes FP, Bini RR et al (2015b) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. https://doi.org/10.1016/j.jtherbio.2014.12.005

    Article  PubMed  Google Scholar 

  28. Coull NA, West AM, Hodder SG, Wheeler P, Havenith G (2021) Body mapping of regional sweat distribution in young and older males. Eur J Appl Physiol 121(1):109–125. https://doi.org/10.1007/s00421-020-04503-5

    Article  PubMed  Google Scholar 

  29. Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. https://doi.org/10.1016/j.jtherbio.2013.04.005

    Article  Google Scholar 

  30. Aylwin P, Havenith G, Cardinale M, Lloyd A, Ihsan M, Taylor L, Adami PE, Alhammoud M, Alonso J-M, Bouscaren N, Buitrago S, Esh C, Gomez-Ezeiza J, Garrandes F, Labidi M, Lange G, Moussay S, Mtibaa K, Townsend N et al (2023) Thermoregulatory responses during road races in hot-humid conditions at the 2019 Athletics World Championships. J Appl Physiol 134(5):1300–1311. https://doi.org/10.1152/japplphysiol.00348.2022

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215

    CAS  PubMed  Google Scholar 

  32. Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. https://doi.org/10.1007/s10439-012-0718-x

    Article  PubMed  Google Scholar 

  33. Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144

    Google Scholar 

  34. Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol 71:28–55. https://doi.org/10.1016/j.infrared.2015.02.007

    Article  Google Scholar 

  35. A Committee on Quality Control and Qualifications of the American Academy of Thermology (1986) Technical guidelines, Edition 2. Thermology 2:108–112

    Google Scholar 

  36. Schwartz RG (2006) Guidelines for neuromusculoskeletal thermography. Thermol Int 16:5–9

    Google Scholar 

  37. Moreira DG, Costello JT, Brito CJ, Adamczyk JG, Ammer K, Bach AJE, Costa CMA, Eglin C, Fernandes AA, Fernández-Cuevas I, Ferreira JJA, Formenti D, Fournet D, Havenith G, Howell K, Jung A, Kenny GP, Kolosovas-Machuca ES, Maley MJ et al (2017) Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J Therm Biol 69:155–162. https://doi.org/10.1016/j.jtherbio.2017.07.006

    Article  PubMed  Google Scholar 

  38. da Silva W, Machado ÁS, Kunzler MR, Jimenez-Perez I, Gil-Calvo M, Priego-Quesada JI, Carpes FP (2022) Reproducibility of skin temperature analyses by novice and experienced evaluators using infrared thermography. J Therm Biol 110:103345. https://doi.org/10.1016/j.jtherbio.2022.103345

    Article  PubMed  Google Scholar 

  39. Ludwig N, Formenti D, Gargano M, Alberti G (2014) Skin temperature evaluation by infrared thermography: comparison of image analysis methods. Infrared Phys Technol 62:1–6

    Article  Google Scholar 

  40. Machado ÁS, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P (2021) Influence of infrared camera model and evaluator reproducibility in the assessment of skin temperature responses to physical exercise. J Therm Biol 98:102913. https://doi.org/10.1016/j.jtherbio.2021.102913

    Article  PubMed  Google Scholar 

  41. Machado ÁS, Cañada-Soriano M, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P, Priego-Quesada JI (2024) Distance and camera features measurements affect the detection of temperature asymmetries using infrared thermography. Quant InfraRed Thermogr J 21(2):69–81. https://doi.org/10.1080/17686733.2022.2143227

    Article  Google Scholar 

  42. Maniar N, Bach AJE, Stewart IB, Costello JT (2015) The effect of using different regions of interest on local and mean skin temperature. J Therm Biol 49–50:33–38. https://doi.org/10.1016/j.jtherbio.2015.01.008

    Article  PubMed  Google Scholar 

  43. Marins JCB, Moreira DG, Cano SP et al (2014) Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35. https://doi.org/10.1016/j.infrared.2014.02.008

    Article  Google Scholar 

  44. Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016b) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. https://doi.org/10.1016/j.infrared.2016.01.014

    Article  Google Scholar 

  45. ISO (2008a) Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. TC121/SC3-IEC SC62D

    Google Scholar 

  46. ISO (2009) Medical electrical equipment-deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph. TR 13154:2009 ISO/TR 8-600

    Google Scholar 

  47. Bach AJ, Stewart IB, Minett GM, Costello JT (2015) Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol Meas 36:R27

    Article  PubMed  Google Scholar 

  48. Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. https://doi.org/10.1007/s00421-010-1744-8

    Article  PubMed  Google Scholar 

  49. Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. https://doi.org/10.3390/s141121950

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71

    Google Scholar 

  51. Requena-Bueno L, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Perez-Soriano P (2020) Validation of ThermoHuman automatic thermographic software for assessing foot temperature before and after running. J Therm Biol 102639. https://doi.org/10.1016/j.jtherbio.2020.102639

  52. Jimenez-Perez I, Gil-Calvo M, Priego-Quesada JI, Aparicio I, Pérez-Soriano P, Ortiz de Anda RMC (2020) Effect of prefabricated thermoformable foot orthoses on plantar surface temperature after running: a gender comparison. J Therm Biol 91:102612. https://doi.org/10.1016/j.jtherbio.2020.102612

    Article  PubMed  Google Scholar 

  53. Chudecka M, Lubkowska A (2015) Thermal maps of young women and men. Infrared Phys Technol 69:81–87. https://doi.org/10.1016/j.infrared.2015.01.012

    Article  Google Scholar 

  54. Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. https://doi.org/10.1007/s10439-009-9809-8

    Article  PubMed  Google Scholar 

  55. Paolillo FR, Lins EC, Corazza AV et al (2013) Thermography applied during exercises with or without infrared light-emitting diode irradiation: individual and comparative analysis. Photomed Laser Surg 31:349–355. https://doi.org/10.1089/pho.2013.3505

    Article  PubMed  PubMed Central  Google Scholar 

  56. Priego-Quesada JI, Pérez-Guarner A, Gandia-Soriano A, Oficial-Casado F, Galindo C, de Anda RMCO, Piñeiro-Ramos JD, Sánchez-Illana Á, Kuligowski J, Barbosa MAG, Vento M, Palmer RS (2020c) Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship With Perceptive, Performance, and Oxidative-Stress Biomarkers. Int J Sports Physiol Perform 1(aop):1–9. https://doi.org/10.1123/ijspp.2019-0963

    Article  Google Scholar 

  57. Priego Quesada JI, Gil-Calvo M, Lucas-Cuevas AG, Aparicio I, Pérez-Soriano P (2017) Assessment of a mattress with phase change materials using a thermal and perception test. Exp Thermal Fluid Sci 81:358–363. https://doi.org/10.1016/j.expthermflusci.2016.10.024

    Article  Google Scholar 

  58. Hillen B, López DA, Schömer E, Nägele M, Simon P (2022) Towards exercise radiomics: deep neural network-based automatic analysis of thermal images captured during exercise. IEEE J Biomed Health Inform 26(9):4530–4540

    Article  PubMed  Google Scholar 

  59. Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, Berlin, pp 223–237

    Chapter  Google Scholar 

  60. Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14

    Google Scholar 

  61. Ring EFJ, Ammer K (2012) Infrared thermal imaging in medicine. Physiol Meas 33:R33–R46. https://doi.org/10.1088/0967-3334/33/3/R33

    Article  CAS  PubMed  Google Scholar 

  62. Ammer K (2005) Temperature readings from thermal images are less dependent on the number of pixels of the measurement area than on variation of room temperature. Thermol Int 15:131–133

    Google Scholar 

  63. Playà-Montmany N, Tattersall GJ (2021) Spot size, distance and emissivity errors in field applications of infrared thermography. Methods Ecol Evol 12(5):828–840. https://doi.org/10.1111/2041-210X.13563

    Article  Google Scholar 

  64. de Deus Passos M, da Rocha AF (2022) Evaluation of infrared thermography with a portable camera as a diagnostic tool for peripheral arterial disease of the lower limbs compared with color Doppler ultrasonography. Arch Med Sci Atheroscler Dis 7:e66. https://doi.org/10.5114/amsad/150716

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li F, Wang M, Wang T, Wang X, Ma X, He H, Ma G, Zhao D, Yue Q, Wang P, Ma M (2023) Smartphone-based infrared thermography to assess progress in thoracic surgical incision healing: a preliminary study. Int Wound J 20(6):2000–2009. https://doi.org/10.1111/iwj.14063

    Article  PubMed  Google Scholar 

  66. Qu Y, Meng Y, Fan H, Xu RX (2022) Low-cost thermal imaging with machine learning for non-invasive diagnosis and therapeutic monitoring of pneumonia. Infrared Phys Technol 123:104201. https://doi.org/10.1016/j.infrared.2022.104201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vardasca R (2019) Are the IR cameras FLIR ONE suitable for clinical applications? Thermol Int 23(3):95–102

    Google Scholar 

  68. Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628

    Article  CAS  Google Scholar 

  69. Duc S, Arfaoui A, Polidori G, Bertucci W (2015) Efficiency and thermography in cycling during a graded exercise test. J Exerc Sports Orthop 2:1–8

    Article  Google Scholar 

  70. Merla A, Iodice P, Tangherlini A et al (2005) Monitoring skin temperature in trained and untrained subjects throughout thermal video. In: Conference proceedings: annual interna- tional conference of the IEEE, Engineering in Medicine and Biology Society, vol 2, pp 1684–1686. https://doi.org/10.1109/IEMBS.2005.1616767

    Chapter  Google Scholar 

  71. Priego-Quesada JI, De la Fuente C, Kunzler MR, Perez-Soriano P, Hervás-Marín D, Carpes FP (2020a) Relationship between skin temperature, electrical manifestations of muscle fatigue, and exercise-induced delayed onset muscle soreness for dynamic contractions: a preliminary study. Int J Environ Res Public Health 17(18). https://doi.org/10.3390/ijerph17186817

  72. Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385

    Article  Google Scholar 

  73. Vollmer M, Möllmann K-P (2011) Infrared thermal imaging: fundamentals, research and applications. Wiley, Weinheim

    Google Scholar 

  74. Riou O, Berrebi S, Bremond P (2004) Nonuniformity correction and thermal drift compensation of thermal infrared camera. Thermosense XXVI 5405:294–302. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5405/1/Nonuniformity-correction-and-thermal-drift-compensation-of-thermal-infrared-camera/10.1117/12.547807.short

    Article  Google Scholar 

  75. Budzier H, Gerlach G (2015) Calibration of uncooled thermal infrared cameras. J Sens Sens Syst 4(1):187–197. https://doi.org/10.5194/jsss-4-187-2015

    Article  Google Scholar 

  76. Tempelhahn A, Budzier H, Krause V, Gerlach G (2016) Shutter-less calibration of uncooled infrared cameras. J Sens Sens Syst 5(1):9–16. https://doi.org/10.5194/jsss-5-9-2016

    Article  Google Scholar 

  77. Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring – A review. Infrared Phys Technol 60:35–55. https://doi.org/10.1016/j.infrared.2013.03.006

    Article  Google Scholar 

  78. Gupta R, Breitenstein O (2006) Temperature drift correction for fast lock-in infrared thermography. In: Proceedings of the 21st European Photovoltaic Solar Energy Conference, pp 4–8. http://www-old.mpi-halle.mpg.de/mpi/publi/pdf/7199_06.pdf

    Google Scholar 

  79. Peeters J, Louarroudi E, De Greef D, Vanlanduit S, Dirckx JJJ, Steenackers G (2017) Time calibration of thermal rolling shutter infrared cameras. Infrared Phys Technol 80:145–152. https://doi.org/10.1016/j.infrared.2016.12.001

    Article  Google Scholar 

  80. Ammer K (2006) Influence of imaging and object conditions on temperature readings from medical infrared images. Pol J Environ Stud (Submitted)

    Google Scholar 

  81. Ivanitsky GR, Khizhnyak EP, Deev AA, Khizhnyak LN (2006) Thermal imaging in medicine: a comparative study of infrared systems operating in wavelength ranges of 3–5 and 8–12 microm as applied to diagnosis. Dokl Biochem Biophys 407:59–63

    Article  CAS  PubMed  Google Scholar 

  82. Tkáčová M, Hudák R, Foffová P, Živčák J (2010) An importance of camera subject distance and angle in musculoskeletal applications of medical thermography. Acta Electrotech Inform 10:57–60

    Google Scholar 

  83. Tian X, Fang L, Liu W (2023) The influencing factors and an error correction method of the use of infrared thermography in human facial skin temperature. Build Environ 244:110736. https://doi.org/10.1016/j.buildenv.2023.110736

    Article  Google Scholar 

  84. Aylwin PE, Racinais S, Bermon S, Lloyd A, Hodder S, Havenith G (2021) The use of infrared thermography for the dynamic measurement of skin temperature of moving athletes during competition; methodological issues. Physiol Meas 42(8):084004. https://doi.org/10.1088/1361-6579/ac1872

    Article  Google Scholar 

  85. Dumke CL, Slivka DR, Cuddy JS et al (2015) The effect of environmental temperature on glucose and insulin after an oral glucose tolerance test in healthy young men. Wilderness Environ Med 26:335–342. https://doi.org/10.1016/j.wem.2015.03.002

    Article  PubMed  Google Scholar 

  86. Guéritée J, Tipton MJ (2015) The relationship between radiant heat, air temperature and thermal comfort at rest and exercise. Physiol Behav 139:378–385. https://doi.org/10.1016/j.physbeh.2014.11.064

    Article  CAS  PubMed  Google Scholar 

  87. Petrofsky JS, Lohman E, Suh HJ et al (2006) The effect of aging on conductive heat exchange in the skin at two environmental temperatures. Med Sci Monit 12:CR400–CR408

    PubMed  Google Scholar 

  88. Maughan RJ, Otani H, Watson P (2011) Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur J Appl Physiol 112:2313–2321. https://doi.org/10.1007/s00421-011-2206-7

    Article  PubMed  Google Scholar 

  89. Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015c) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. https://doi.org/10.1016/j.jtherbio.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  90. Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016c) Effect of saddle height on skin temperature measured in different days of cycling. Springerplus 5:205–214. https://doi.org/10.1186/s40064-016-1843-z

    Article  PubMed  PubMed Central  Google Scholar 

  91. ISO (2008b) 18434-1:2008: condition monitoring and diagnostics of machines—thermoraphy—part 1: general procedures

    Google Scholar 

  92. Sanchez-Marin FJ, Calixto-Carrera S, Villaseñor-Mora C (2009) Novel approach to assess the emissivity of the human skin. J Biomed Opt 14:24006–24006–6. https://doi.org/10.1117/1.3086612

    Article  Google Scholar 

  93. Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686

    Article  CAS  PubMed  Google Scholar 

  94. Togawa T (1989) Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature. Clin Phys Physiol Meas 10:39

    Article  CAS  PubMed  Google Scholar 

  95. James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. https://doi.org/10.1016/j.jtherbio.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  96. Bernard V, Staffa E, Mornstein V, Bourek A (2013) Infrared camera assessment of skin surface temperature—effect of emissivity. Phys Med 29:583–591. https://doi.org/10.1016/j.ejmp.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  97. Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. https://doi.org/10.1007/s10439-008-9512-1

    Article  PubMed  Google Scholar 

  98. Zontak A, Sideman S, Verbitsky O, Beyar R (1998) Dynamic thermography: analysis of hand temperature during exercise. Ann Biomed Eng 26:988–993

    Article  CAS  PubMed  Google Scholar 

  99. Pereira Franco VH, Vasquez-Bonilla AA, Sillero-Quintana M (2025) Influence of body position on skin temperature, heart rate, and blood pressure in active men. J Therm Biol 127:104009. https://doi.org/10.1016/j.jtherbio.2024.104009

    Article  PubMed  Google Scholar 

  100. Bertmaring I, Babski-Reeves K, Nussbaum MA (2008) Infrared imaging of the anterior deltoid during overhead static exertions. Ergonomics 51:1606–1619. https://doi.org/10.1080/00140130802216933

    Article  PubMed  Google Scholar 

  101. Houdas Y, Ring EFJ (1982) Temperature distribution. In: Human body temperature. Springer, berlin, pp 81–103

    Chapter  Google Scholar 

  102. Chamberlain JM, Terndrup TE, Alexander DT et al (1995) Determination of normal ear temperature with an infrared emission detection thermometer. Ann Emerg Med 25:15–20. https://doi.org/10.1016/S0196-0644(95)70349-7

    Article  CAS  PubMed  Google Scholar 

  103. Smolander J, Härmä M, Lindgvist A et al (1993) Circadian variation in peripheral blood flow in relation to core temperature at rest. Eur J Appl Physiol 67:192–196. https://doi.org/10.1007/BF00376666

    Article  CAS  Google Scholar 

  104. Costa CMA, Sillero-Quintana M, Piñonosa Cano S et al (2015) Daily oscillations of skin temperature in military personnel using thermography. J R Army Med Corps. https://doi.org/10.1136/jramc-2015-000462

  105. Da Silva W, Godoy-López JR, Machado ÁS, Lemos AL, Sendra-Pérez C, Brejano MG, Carpes FP, Priego-Quesada JI (2024) Effect of different Volumes of exercise on skin temperature responses over the following 24 hours. J Therm Biol 123:103923

    Article  PubMed  Google Scholar 

  106. Marins JCB, Formenti D, Costa CMA et al (2015) Circadian and gender differences in skin temperature in militaries by thermography. Infrared Phys Technol 71:322–328. https://doi.org/10.1016/j.infrared.2015.05.008

    Article  Google Scholar 

  107. Priego-Quesada JI, Catalá-Vilaplana I, Bermejo-Ruiz JL, Gandia-Soriano A, Pellicer-Chenoll MT, Encarnación-Martínez A, Ortiz C, de Anda R, Salvador-Palmer R (2022) Effect of 10 km run on lower limb skin temperature and thermal response after a cold-stress test over the following 24 h. J Therm Biol 105:103225. https://doi.org/10.1016/j.jtherbio.2022.103225

    Article  PubMed  Google Scholar 

  108. Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108

    Google Scholar 

  109. Novotny J, Rybarova S, Zacha D et al (2015) The influence of breaststroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng Biomech 17:121

    PubMed  Google Scholar 

  110. Zaidi H, Fohanno S, Polidori G, Taiar R (2007) The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography. Acta Bioeng Biomech 9:47

    CAS  PubMed  Google Scholar 

  111. van Ooijen AMJ, van Marken Lichtenbelt WD, Westerterp KR (2001) Individual differences in body temperature and the relation to energy expenditure: the influence of mild cold. J Therm Biol 26:455–459. https://doi.org/10.1016/S0306-4565(01)00060-2

    Article  Google Scholar 

  112. Gagnon D, Kenny GP (2011) Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol 589:6205–6217. https://doi.org/10.1113/jphysiol.2011.219220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Karki A, Karppi P, Ekberg J, Selfe J (2004) A thermographic investigation of skin temperature changes in response to a thermal washout of the knee in healthy young adults. Thermol Int 14:137–141

    Google Scholar 

  114. Gagnon D, Jay O, Lemire B, Kenny GP (2008) Sex-related differences in evaporative heat loss: the importance of metabolic heat production. Eur J Appl Physiol 104:821–829. https://doi.org/10.1007/s00421-008-0837-0

    Article  PubMed  Google Scholar 

  115. Gonzalez RR (1985) Blanchard LA (1998) Thermoregulatory responses to cold transients: effects of menstrual cycle in resting women. J Appl Physiol Bethesda Md 85:543–553

    Google Scholar 

  116. Stachenfeld NS, Silva C, Keefe DL (2000) Estrogen modifies the temperature effects of progesterone. J Appl Physiol Bethesda Md (1985) 88:1643–1649

    Article  CAS  Google Scholar 

  117. Bartelink ML, Wollersheim H, Theeuwes A et al (1990) Changes in skin blood flow during the menstrual cycle: the influence of the menstrual cycle on the peripheral circulation in healthy female volunteers. Clin Sci 78:527–532

    Article  CAS  Google Scholar 

  118. do Nascimento Silva RK, Matias FL, Gonçalves AF, de Almeida Ferreira JJ, de Andrade PR (2023) Skin temperature of women: a prospective longitudinal study. J Therm Biol 118:103741. https://doi.org/10.1016/j.jtherbio.2023.103741

    Article  Google Scholar 

  119. Niu HH, Lui PW, Hu JS et al (2001) Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed 64:459–468

    CAS  Google Scholar 

  120. Inbar O, Morris N, Epstein Y, Gass G (2004) Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males. Exp Physiol 89:691–700. https://doi.org/10.1113/expphysiol.2004.027979

    Article  PubMed  Google Scholar 

  121. Ho CW, Beard JL, Farrell PA et al (1997) Age, fitness, and regional blood flow during exercise in the heat. J Appl Physiol Bethesda Md 82:1126–1135

    CAS  Google Scholar 

  122. Stapleton JM, Poirier MP, Flouris AD et al (2015) Aging impairs heat loss, but when does it matter? J Appl Physiol Bethesda Md 1985 118:299–309. https://doi.org/10.1152/japplphysiol.00722.2014

    Article  Google Scholar 

  123. Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. https://doi.org/10.1016/j.autneu.2016.03.001

    Article  Google Scholar 

  124. Havenith G (2001) Human surface to mass ratio and body core temperature in exercise heat stress—a concept revisited. J Therm Biol 26:387–393. https://doi.org/10.1016/S0306-4565(01)00049-3

    Article  Google Scholar 

  125. Du Bois D, Du Bois EF (1916) Clinical calorimetry: a formula to estimate the appropriate surface area if height and weight be known. Arch Intern Med 17:863–871

    Article  Google Scholar 

  126. Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. https://doi.org/10.1016/j.jtherbio.2014.03.001

    Article  PubMed  Google Scholar 

  127. Korman P, Kusy K, Straburzyńska-Lupa A, Sillero-Quintana M, Zarębska E, Zieliński J (2024) Exploring the correlation of skin temperature and body composition in athletes undergoing exhaustive physical exercise. J Therm Biol 123:103918

    Article  PubMed  Google Scholar 

  128. Salamunes ACC, Stadnik AMW, Neves EB (2017) The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J Therm Biol 66:1–9. https://doi.org/10.1016/j.jtherbio.2017.03.006

    Article  PubMed  Google Scholar 

  129. Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. https://doi.org/10.3945/ajcn.2009.27567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kumar P, Gaurav A, Rajnish RK, Sharma S, Kumar V, Aggarwal S, Patel S (2022) Applications of thermal imaging with infrared thermography in Orthopaedics. J Clin Orthop Trauma 24:101722. https://doi.org/10.1016/j.jcot.2021.101722

    Article  PubMed  Google Scholar 

  131. Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. https://doi.org/10.1088/0967-3334/29/4/007

    Article  PubMed  Google Scholar 

  132. Ichinose-Kuwahara T, Inoue Y, Iseki Y et al (2010) Sex differences in the effects of physical training on sweat gland responses during a graded exercise. Exp Physiol 95:1026–1032. https://doi.org/10.1113/expphysiol.2010.053710

    Article  PubMed  Google Scholar 

  133. Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96:822–828. https://doi.org/10.1113/expphysiol.2010.056176

    Article  PubMed  Google Scholar 

  134. Ring EF, Collins AJ, Bacon PA, Cosh JA (1974) Quantitation of thermography in arthritis using multi-isothermal analysis. II. Effect of nonsteroidal anti-inflammatory therapy on the thermographic index. Ann Rheum Dis 33:353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ring EF, Engel J, Page-Thomas DP (1984) Thermologic methods in clinical pharmacology-skin temperature measurement in drug trials. Int J Clin Pharmacol Ther 22:20–24

    CAS  Google Scholar 

  136. Toshihiko U, Yoshiharu T, Atsuhiro M et al (1987) Application of thermography to the evaluation of the histamine skin test in man. J Pharmacol Methods 18:103–110

    Article  Google Scholar 

  137. Wilczyński S (2015) The use of dynamic thermal analysis to distinguish between genuine and counterfeit drugs. Int J Pharm 490:16–21. https://doi.org/10.1016/j.ijpharm.2015.04.077

    Article  CAS  PubMed  Google Scholar 

  138. Hirai A, Tanabe M, Shido O (1991) Enhancement of finger blood flow response of postprandial human subjects to the increase in body temperature during exercise. Eur J Appl Physiol 62:221–227

    Article  CAS  Google Scholar 

  139. Westerterp-Plantenga MS, Wouters L, ten Hoor F (1990) Deceleration in cumulative food intake curves, changes in body temperature and diet-induced thermogenesis. Physiol Behav 48:831–836

    Article  CAS  PubMed  Google Scholar 

  140. Kieser E, Dellimore K, Scheffer C et al (2015) Development of diagnostic sensors for infant dehydration assessment using optical methods. In: Conference proceedings: annual international conference of the IEEE, Engineering in Medicine and Biology Society, vol 2015, pp 5537–5540. https://doi.org/10.1109/EMBC.2015.7319646

    Chapter  Google Scholar 

  141. Ammer K, Melnizky P, Rathkolb O (2003) Skin temperature after intake of sparkling wine, still wine or sparkling water. Thermol Int 13:99–102

    Google Scholar 

  142. Hughes JH, Henry RE, Daly MJ (1984) Influence of ethanol and ambient temperature on skin blood flow. Ann Emerg Med 13:597–600. https://doi.org/10.1016/S0196-0644(84)80282-6

    Article  CAS  PubMed  Google Scholar 

  143. Mannara G, Salvatori GC, Pizzuti GP (1993) Ethyl alcohol induced skin temperature changes evaluated by thermography. Preliminary results. Boll Della Soc Ital Biol Sper 69:587

    CAS  Google Scholar 

  144. Wolf R, Tüzün B, Tüzün Y (1999) Alcohol ingestion and the cutaneous vasculature1. Clin Dermatol 17:395–403. https://doi.org/10.1016/S0738-081X(99)00023-1

    Article  CAS  PubMed  Google Scholar 

  145. Koot P, Deurenberg P (1995) Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Ann Nutr Metab 39:135–142. https://doi.org/10.1159/000177854

    Article  CAS  PubMed  Google Scholar 

  146. Quinlan P, Lane J, Aspinall L (1997) Effects of hot tea, coffee and water ingestion on physiological responses and mood: the role of caffeine, water and beverage type. Psychopharmacology 134:164–173. https://doi.org/10.1007/s002130050438

    Article  CAS  PubMed  Google Scholar 

  147. Quinlan PT, Lane J, Moore KL et al (2000) The acute physiological and mood effects of tea and coffee: the role of caffeine level. Pharmacol Biochem Behav 66:19–28

    Article  CAS  PubMed  Google Scholar 

  148. Bornmyr S, Svensson H (1991) Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Clin Physiol 11:135–141

    Article  CAS  PubMed  Google Scholar 

  149. Gershon-Cohen J, Borden AGB, Hermel MB (1969) Thermography of extremities after smoking. Br J Radiol 42:189–191

    Article  CAS  PubMed  Google Scholar 

  150. Ijzerman RG, Serne EH, van Weissenbruch MM et al (2003) Cigarette smoking is associated with an acute impairment of microvascular function in humans. Clin Sci 104:247–252

    Article  Google Scholar 

  151. Barnes RB (1963) Thermography of the human body. Science 140:870–877

    Article  CAS  PubMed  Google Scholar 

  152. Togawa T, Saito H (1994) Non-contact imaging of thermal properties of the skin. Physiol Meas 15:291. https://doi.org/10.1088/0967-3334/15/3/007

    Article  CAS  PubMed  Google Scholar 

  153. Connolly DAJ, Sayers SP, McHugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17:197–208

    PubMed  Google Scholar 

  154. Ryu JH, Paik IY, Woo JH et al (2016) Impact of different running distances on muscle and lymphocyte DNA damage in amateur marathon runners. J Phys Ther Sci 28:450–455. https://doi.org/10.1589/jpts.28.450

    Article  PubMed  PubMed Central  Google Scholar 

  155. Petersen B, Philipsen PA, Wulf HC (2014) Skin temperature during sunbathing–relevance for skin cancer. Photochem Photobiol Sci 13:1123–1125. https://doi.org/10.1039/c4pp00066h

    Article  CAS  PubMed  Google Scholar 

  156. Stokes JE, Leach KA, Main DCJ, Whay HR (2012) An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 193:674–678

    Article  CAS  PubMed  Google Scholar 

  157. Whay HR, Bell MJ, Main DCJ (2004) Validation of lame limb identification through thermal imaging. In: Proceedings of 13th international symposium and 5th conference of lameness rumen. Maribor Slovenija, pp 11–15

    Google Scholar 

  158. Formenti D, Ludwig N, Rossi A, Trecroci A, Alberti G, Gargano M, Merla A, Ammer K, Caumo A (2018) Is the maximum value in the region of interest a reliable indicator of skin temperature? Infrared Phys Technol 94:299–304

    Article  Google Scholar 

  159. Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermog- raphy as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228

    Google Scholar 

  160. Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60

    Google Scholar 

  161. Nowakowski AZ (2006) Advances of quantitative IR-thermal imaging in medical diagnostics. Brain 10:3

    Google Scholar 

  162. Vainionpaa M, Tienhaara E-P, Raekallio M et al (2012) Thermographic imaging of the superficial temperature in racing greyhounds before and after the race. Sci World J. https://doi.org/10.1100/2012/182749

  163. Haddad DS, Brioschi ML, Baladi MG, Arita ES (2016) A new evaluation of heat distribution on facial skin surface by infrared thermography. Dentomaxillofac Radiol 45:20150264. https://doi.org/10.1259/dmfr.20150264

    Article  PubMed  PubMed Central  Google Scholar 

  164. Keramidas ME, Geladas ND, Mekjavic IB, Kounalakis SN (2013) Forearm-finger skin temperature gradient as an index of cutaneous perfusion during steady-state exercise. Clin Physiol Funct Imaging 33:400–404. https://doi.org/10.1111/cpf.12043

    Article  PubMed  Google Scholar 

  165. Taylor NAS, Tipton MJ, Kenny GP (2014) Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101. https://doi.org/10.1016/j.jtherbio.2014.10.006

    Article  PubMed  Google Scholar 

  166. Choi JK, Miki K, Sagawa S, Shiraki K (1997) Evaluation of mean skin temperature formulas by infrared thermography. Int J Biometeorol 41:68–75. https://doi.org/10.1007/s004840050056

    Article  CAS  PubMed  Google Scholar 

  167. Jimenez-Perez I, Gil-Calvo M, Vardasca R, Fernandes RJ, Vilas-Boas JP (2021) Pre-exercise skin temperature evolution is not related with 100 m front crawl performance. J Therm Biol 98:102926. https://doi.org/10.1016/j.jtherbio.2021.102926

    Article  CAS  PubMed  Google Scholar 

  168. Pérez-Guarner A, Priego-Quesada JI, Oficial-Casado F, Cibrián Ortiz de Anda RM, Carpes FP, Palmer RS (2019) Association between physiological stress and skin temperature response after a half marathon. Physiol Meas 40(3):034009–034019. https://doi.org/10.1088/1361-6579/ab0fdc

    Article  PubMed  Google Scholar 

  169. Haddad DS, Brioschi ML, Vardasca R et al (2014) Thermographic characterization of masticatory muscle regions in volunteers with and without myogenous temporomandibular disorder: preliminary results. Dentomaxillofac Radiol 43:20130440. https://doi.org/10.1259/dmfr.20130440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sun P-C, Jao S-HE, Cheng C-K (2005) Assessing foot temperature using infrared thermography. Foot Ankle Int 26:847–853. https://doi.org/10.1177/107110070502601010

    Article  PubMed  Google Scholar 

  171. Verderber L, da Silva W, Aparicio-Aparicio I, Germano AMC, Carpes FP, Priego-Quesada JI (2024) Assessment of alternative metrics in the application of infrared thermography to detect muscle damage in sports. Physiol Meas 45(9):095014. https://doi.org/10.1088/1361-6579/ad7ad3

    Article  Google Scholar 

  172. Bogomilsky S, Hoffer O, Shalmon G, Scheinowitz M (2022) Preliminary study of thermal density distribution and entropy analysis during cycling exercise stress test using infrared thermography. Sci Rep 12(1):14018. https://doi.org/10.1038/s41598-022-18233-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Alburquerque Santana PV, Alvarez PD, Felipe da Costa Sena A, Serpa TK, de Assis MG, Pimenta EM, Costa HA, Sevilio de Oliveira Junior MN, Torres Cabido CE, Veneroso CE (2022) Relationship between infrared thermography and muscle damage markers in physically active men after plyometric exercise. J Therm Biol 104:103187. https://doi.org/10.1016/j.jtherbio.2022.103187

    Article  PubMed  Google Scholar 

  174. de Andrade Fernandes A, Marins JCB, de Andrade AGP, Albuquerque MR, Brito CJ, da Silva CD, do Valle MAAN, de Assis MG, Garcia ES, Pimenta EM (2024) Thermopixelgraphy: a new method for analyzing the skin temperature of the lower limbs through infrared thermography. J Therm Anal Calorim 149(22):12737–12745. https://doi.org/10.1007/s10973-024-13799-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priego-Quesada, J.I., Kunzler, M.R., Carpes, F.P. (2025). Methodological Aspects of Infrared Thermography in Human Assessment. In: Priego-Quesada, J.I. (eds) Application of Infrared Thermography in Sports Science. Springer, Cham. https://doi.org/10.1007/978-3-031-93311-0_4

Download citation

Publish with us

Policies and ethics