Abstract
Trichology is defined as the study of hair, including its general biology and evolution. As early synapsids and sauropsids shared common placodes that grew scales, they evolved different integuments that would eventually define the epidermis of contemporary species. Mammals derived from the synapsids and gradually evolved in the form that we know today as endothermic vertebrates that bear mammary glands and hair, the latter integument having evolved first. All mammals, from the egg-laying platypus to the placental blue whale, grow hair, although some may appear bare-skinned. Each individual hair is tiny and appears insignificant, morphologically speaking, but its biology, including its functions, is impressively complex. This chapter introduces trichology and presents a general overview of the literature describing the evolution of hair, the specific case of human body hair, the biology of hair morphogenesis, and the numerous biological functions of hairs. It focuses on the biology and functions of the sum of hairs, termed ‘pelage’, including moulting, colouration, and thermoregulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Rogers GE, Powell BC. Organization and expression of hair follicle genes. J Invest Dermatol. 1993;101(1, Supplement):S50–S5. https://doi.org/10.1016/0022-202X(93)90500-H.
Plowman JE, Harland DP. Fibre ultrastructure. In: Plowman JE, Harland DP, Deb-Choudhury S, editors. The hair fibre: proteins, structure and development. Singapore: Springer; 2018. p. 3–13.
Dhouailly D, Godefroit P, Martin T, Nonchev S, Caraguel F, Oftedal O. Getting to the root of scales, feather and hair: as deep as odontodes? Exp Dermatol. 2019;28(4):503–8. https://doi.org/10.1111/exd.13391.
Dhouailly D. Evo devo of the vertebrates integument. J Dev Biol. 2023;11(2):25. https://doi.org/10.3390/jdb11020025.
Mukhopadhyay M, Gorivodsky M, Shtrom S, Grinberg A, Niehrs C, Morasso MI, et al. Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development. 2006;133(11):2149–54. https://doi.org/10.1242/dev.02381.
Oftedal OT, Dhouailly D. Evo-devo of the mammary gland. J Mammary Gland Biol Neoplasia. 2013;18(2):105–20. https://doi.org/10.1007/s10911-013-9290-8.
Ji Q, Luo Z-X, Yuan C-X, Tabrum AR. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science. 2006;311(5764):1123–7. https://doi.org/10.1126/science.1123026.
Plikus M, Wang WP, Liu J, Wang X, Jiang T-X, Chuong C-M. Morpho-regulation of ectodermal organs: integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol. 2004;164(3):1099–114. https://doi.org/10.1016/S0002-9440(10)63197-5.
Mayer JA, Foley J, De La Cruz D, Chuong C-M, Widelitz R. Conversion of the nipple to hair-bearing epithelia by lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface. Am J Pathol. 2008;173(5):1339–48. https://doi.org/10.2353/ajpath.2008.070920.
Martin T, Marugán-Lobón J, Vullo R, Martín-Abad H, Luo Z-X, Buscalioni AD. A Cretaceous eutriconodont and integument evolution in early mammals. Nature. 2015;526(7573):380–4. https://doi.org/10.1038/nature14905.
Lavker RM, Sun T-T, Oshima H, Barrandon Y, Akiyama M, Ferraris C, et al. Hair follicle stem cells. J Invest Dermatol. 2003;8(1):28–38. https://doi.org/10.1046/j.1523-1747.2003.12169.x.
Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3(1):33–43. https://doi.org/10.1016/j.stem.2008.05.009.
Miyazaki M, Man WC, Ntambi JM. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr. 2001;131(9):2260–8. https://doi.org/10.1093/jn/131.9.2260.
Stenn KS, Zheng Y, Parimoo S. Phylogeny of the hair follicle: the sebogenic hypothesis. J Invest Dermatol. 2008;128(6):1576–8. https://doi.org/10.1038/sj.jid.5701200.
Jones LN. The hair fiber surface. In: Forslind B, Lindberg M, Norlen L, editors. Skin, hair, and nails: structure and function. Boca Raton: CRC Press; 2004. p. 285–317.
Vullo R, Girard V, Azar D, Néraudeau D. Mammalian hairs in early Cretaceous amber. Naturwissenschaften. 2010;97(7):683–7. https://doi.org/10.1007/s00114-010-0677-8.
Oftedal OT. The mammary gland and its origin during synapsid evolution. J Mammary Gland Biol Neoplasia. 2002;7(3):225–52. https://doi.org/10.1023/A:1022896515287.
Maderson PFA. Mammalian skin evolution: a reevaluation. Exp Dermatol. 2003;12(3):233–6. https://doi.org/10.1034/j.1600-0625.2003.00069.x.
Chernova OF, Zherebtsova OV. Architecture of vibrissae in eight rodent species of Ctenohystrica (Rodentia): a comparative SEM study. Zool Anz. 2023;307:54–69. https://doi.org/10.1016/j.jcz.2023.09.004.
Hillenius WJ, Ruben JA. The evolution of endothermy in terrestrial vertebrates: who? when? why? Physiol Biochem Zool. 2004;77(6):1019–42. https://doi.org/10.1086/425185. PubMed PMID: 15674773.
Wheeler PE. The loss of functional body hair in man: the influence of thermal environment, body form and bipedality. J Hum Evol. 1985;14(1):23–8. https://doi.org/10.1016/S0047-2484(85)80091-9.
Ruxton GD, Wilkinson DM. Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Natl Acad Sci. 2011;108(52):20965–9. https://doi.org/10.1073/pnas.1113915108.
Abbasi AA. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle. Sci Rep. 2011;1(1):32. https://doi.org/10.1038/srep00032.
Harland DP. Environment of the anagen follicle. In: Plowman JE, Harland DP, Deb-Choudhury S, editors. The hair fibre: proteins, structure and development. Singapore: Springer; 2018. p. 97–108.
Blume U, Ferracin J, Verschoore M, Czernielewski JM, Schaefer H. Physiology of the vellus hair follicle: hair growth and sebum excretion. Br J Dermatol. 1991;124(1):21–8. https://doi.org/10.1111/j.1365-2133.1991.tb03277.x.
Blume U, Verschoore M, Poncet M, Czernielewski J, Orfanos CE, Schaefer H. The vellus hair follicle in acne: hair growth and sebum excretion. Br J Dermatol. 1993;129(1):23–7. https://doi.org/10.1111/j.1365-2133.1993.tb03306.x.
Hodges AL, Holland AC. Prevention and treatment of injuries and infections related to pubic hair removal. Nurs Womens Health. 2017;21(4):313–7. https://doi.org/10.1016/j.nwh.2017.06.001.
Ramsey S, Sweeney C, Fraser M, Oades G. Pubic hair and sexuality: a review. J Sex Med. 2009;6(8):2102–10. https://doi.org/10.1111/j.1743-6109.2009.01307.x.
Pagel M, Bodmer W. A naked ape would have fewer parasites. Proc R Soc Lond Ser B Biol Sci. 2003;270(suppl_1):S117–S9. https://doi.org/10.1098/rsbl.2003.0041.
van der Veen C, Handjiski B, Paus R, Müller-Röver S, Maurer M, Eichmüller S, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol. 1999;113(4):523–32. https://doi.org/10.1046/j.1523-1747.1999.00740.x.
Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94. https://doi.org/10.1152/physrev.2001.81.1.449. PubMed PMID: 11152763.
Liu S, Zhang H, Duan E. Epidermal development in mammals: key regulators, signals from beneath, and stem cells. Int J Mol Sci. 2013;14(6):10869–95. https://doi.org/10.3390/ijms140610869. PubMed PMID: 23708093.
Fraser EE, Longstaffe FJ, Fenton MB. Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can J Zool. 2013;91(8):533–44. https://doi.org/10.1139/cjz-2013-0072.
Ling JK. Pelage and molting in wild mammals with special reference to aquatic forms. Q Rev Biol. 1970;45(1):16–54. https://doi.org/10.1086/406361. PubMed PMID: 5446769.
Caro T. The adaptive significance of coloration in mammals. Bioscience. 2005;55(2):125–36. https://doi.org/10.1641/0006-3568(2005)055[0125:Tasoci]2.0.Co;2.
Zimova M, Hackländer K, Good JM, Melo-Ferreira J, Alves PC, Mills LS. Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol Rev. 2018;93(3):1478–98. https://doi.org/10.1111/brv.12405.
King CM, Moody JE. The biology of the stoat (Mustela erminea) in the National Parks of New Zealand V. Moult and colour change. NZ J Zool. 1982;9(1):119–30. https://doi.org/10.1080/03014223.1982.10423841.
Zimova M, Mills LS, Nowak JJ. High fitness costs of climate change-induced camouflage mismatch. Ecol Lett. 2016;19(3):299–307. https://doi.org/10.1111/ele.12568.
Koneru M, Caro T. Animal coloration in the Anthropocene. Front Ecol Evol. 2022;10:10. https://doi.org/10.3389/fevo.2022.857317.
Maurel D, Coutant C, Boissin-Agasse L, Boissin J. Seasonal moulting patterns in three fur bearing mammals: the European badger (Meles meles L.), the red fox (Vulpes vulpes L.), and the mink (Mustela vison). A morphological and histological study. Can J Zool. 1986;64(8):1757–64. https://doi.org/10.1139/z86-265.
Kryltzov VAI. Moult topography of Microtinae, other rodents, and lagomorphs. Z Säugetierkd. 1964;29(1):1–17. https://doi.org/10.5281/zenodo.13666398.
Unnsteinsdóttir ER. Íslenski melrakkinn – þriðji hluti. Náttúrufræðingurinn. 2024;94(1):24–37.
Jenkins JR. Skin disorders of the rabbit. Vet Clin North Am Exot Anim Pract. 2001;4(2):543–63. https://doi.org/10.1016/S1094-9194(17)30042-7.
D’Alba L, Shawkey MD. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol Rev. 2019;99(1):1–19. https://doi.org/10.1152/physrev.00059.2017. PubMed PMID: 30255724.
Barsh GS. Coat color mutations, animals. In: Brenner S, Miller JH, editors. Encyclopedia of genetics. New York: Academic Press; 2001. p. 397–401.
Caro T, Mallarino R. Coloration in mammals. Trends Ecol Evol. 2020;35(4):357–66. https://doi.org/10.1016/j.tree.2019.12.008.
Lewin RA, Robinson PT. The greening of polar bears in zoos. Nature. 1979;278(5703):445–7. https://doi.org/10.1038/278445a0.
Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, et al. What’s the use of generating melanin? Exp Dermatol. 1999;8(2):153–64. https://doi.org/10.1111/j.1600-0625.1999.tb00365.x.
McNamara ME, Rossi V, Slater TS, Rogers CS, Ducrest AL, Dubey S, et al. Decoding the evolution of melanin in vertebrates. Trends Ecol Evol. 2021;36(5):430–43. https://doi.org/10.1016/j.tree.2020.12.012.
Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16(5):523–31. https://doi.org/10.1034/j.1600-0749.2003.00072.x.
Delhey K. Gloger’s rule. Curr Biol. 2017;27(14):R689–R91. https://doi.org/10.1016/j.cub.2017.04.031.
Setaluri V, Jayanthy A. Coat color mutations, animals. In: Maloy S, Hughes K, editors. Brenner’s encyclopedia of genetics. 2nd ed. San Diego: Academic Press; 2013. p. 58–60.
Rensch VB. Das prinzip geographischer rassenkreise und das problem der artbildung. Berlin: Gebrüder Borntraeger; 1929.
Delhey K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol Rev. 2019;94(4):1294–316. https://doi.org/10.1111/brv.12503.
Görnitz K. Ueber die Wirkung klimatischer Faktoren auf die Pigmentfarben der Vogelfedern. J Ornithol. 1923;71(4):456–511. https://doi.org/10.1007/BF01975089.
Howell N, Sheard C, Koneru M, Brockelsby K, Ono K, Caro T. Aposematism in mammals. Evolution. 2021;75(10):2480–93. https://doi.org/10.1111/evo.14320.
Wacker CB, McAllan BM, Körtner G, Geiser F. The functional requirements of mammalian hair: a compromise between crypsis and thermoregulation? Sci Nat. 2016;103(7):53. https://doi.org/10.1007/s00114-016-1376-x.
Hirth DH, McCullough DR. Evolution of alarm signals in ungulates with special reference to white-tailed deer. Am Nat. 1977;111(977):31–42. https://doi.org/10.1086/283136.
Maloiy GMO, Kamau JMZ, Shkolnik A, Meir M, Arieli R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda) (Mammalia)*. J Zool. 1982;198(3):279–91. https://doi.org/10.1111/j.1469-7998.1982.tb02076.x.
Blix AS. Adaptations to polar life in mammals and birds. J Exp Biol. 2016;219(8):1093–105. https://doi.org/10.1242/jeb.120477.
Prestrud P. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic. 1991;44(2):132–8. https://doi.org/10.14430/arctic1529.
Bilodeau F, Gauthier G, Berteaux D. The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecologia. 2013;172(4):1007–16. https://doi.org/10.1007/s00442-012-2549-8. PubMed PMID: WOS:000322180000009.
Barnes BM. Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator. Science. 1989;244(4912):1593–5. https://doi.org/10.1126/science.2740905.
Yan J, Barnes BM, Kohl F, Marr TG. Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics. 2008;32(2):170–81. https://doi.org/10.1152/physiolgenomics.00075.2007. PubMed PMID: 17925484.
Williams TD, Allen DD, Groff JM, Glass RL. An analysis of California sea otter (Enhydra lutris) pelage and integument. Mar Mamm Sci. 1992;8(1):1–18. https://doi.org/10.1111/j.1748-7692.1992.tb00120.x.
Kuhn RA. Comparative analysis of structural and functional hair coat characteristics, including heat loss regulation, in the Lutrinae (Carnivora: Mustelidae). Hamburg: Universität Hamburg; 2009.
Tarasoff FJ, Bisaillon A, Piérard J, Whitt AP. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can J Zool. 1972;50(7):915–29. https://doi.org/10.1139/z72-124. PMID: 5055119.
Scholander PF, Walters V, Hock R, Irving L. Body insulation of some arctic and tropical mammals and birds. Biol Bull. 1950;99(2):225–36. https://doi.org/10.2307/1538740. PubMed PMID: 14791421.
Meyer W, Neurand K, Schnapper A. SEM demonstration of elastic fibres in the integument of small and densely-haired mammals. Folia Morphol (Warsz). 2000;59(4):279–83.
Reinhold LM, Rymer TL, Helgen KM, Wilson DT. Photoluminescence in mammal fur: 111 years of research. J Mammal. 2023;104(4):892–906. https://doi.org/10.1093/jmammal/gyad027.
Hughes B, Bowman J, Stock NL, Burness G. Using mass spectrometry to investigate fluorescent compounds in squirrel fur. PLoS One. 2022;17(2):e0257156. https://doi.org/10.1371/journal.pone.0257156.
Toussaint SLD, Ponstein J, Thoury M, Métivier R, Kalthoff DC, Habermeyer B, et al. Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integr Zool. 2023;18(1):15–26. https://doi.org/10.1111/1749-4877.12655.
Tumlison CR, Tumlison TL. Investigation of fluorescence in selected mammals of Arkansas. J Ark Acad Sci. 2021;75(1):29–35. https://doi.org/10.54119/jaas.2021.7515.
Turner GG, Meteyer CU, Barton H, Gumbs JF, Reeder DM, Overton B, et al. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J Wildl Dis. 2014;50(3):566–73. https://doi.org/10.7589/2014-03-058.
Kohler AM, Olson ER, Martin JG, Anich PS. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J Mammal. 2019;100(1):21–30. https://doi.org/10.1093/jmammal/gyy177.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2025 Canadian Museum of Nature
About this chapter
Cite this chapter
Fontaine-Topaloff, J., Fauteux, D., Khidas, K. (2025). Trichology. In: Hair Atlas of Canadian Mammals. Springer, Cham. https://doi.org/10.1007/978-3-032-00006-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-032-00006-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-032-00005-7
Online ISBN: 978-3-032-00006-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)