Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Trichology

  • Chapter
  • First Online:
Hair Atlas of Canadian Mammals

Abstract

Trichology is defined as the study of hair, including its general biology and evolution. As early synapsids and sauropsids shared common placodes that grew scales, they evolved different integuments that would eventually define the epidermis of contemporary species. Mammals derived from the synapsids and gradually evolved in the form that we know today as endothermic vertebrates that bear mammary glands and hair, the latter integument having evolved first. All mammals, from the egg-laying platypus to the placental blue whale, grow hair, although some may appear bare-skinned. Each individual hair is tiny and appears insignificant, morphologically speaking, but its biology, including its functions, is impressively complex. This chapter introduces trichology and presents a general overview of the literature describing the evolution of hair, the specific case of human body hair, the biology of hair morphogenesis, and the numerous biological functions of hairs. It focuses on the biology and functions of the sum of hairs, termed ‘pelage’, including moulting, colouration, and thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers GE, Powell BC. Organization and expression of hair follicle genes. J Invest Dermatol. 1993;101(1, Supplement):S50–S5. https://doi.org/10.1016/0022-202X(93)90500-H.

    Article  Google Scholar 

  2. Plowman JE, Harland DP. Fibre ultrastructure. In: Plowman JE, Harland DP, Deb-Choudhury S, editors. The hair fibre: proteins, structure and development. Singapore: Springer; 2018. p. 3–13.

    Chapter  Google Scholar 

  3. Dhouailly D, Godefroit P, Martin T, Nonchev S, Caraguel F, Oftedal O. Getting to the root of scales, feather and hair: as deep as odontodes? Exp Dermatol. 2019;28(4):503–8. https://doi.org/10.1111/exd.13391.

    Article  PubMed  Google Scholar 

  4. Dhouailly D. Evo devo of the vertebrates integument. J Dev Biol. 2023;11(2):25. https://doi.org/10.3390/jdb11020025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukhopadhyay M, Gorivodsky M, Shtrom S, Grinberg A, Niehrs C, Morasso MI, et al. Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development. 2006;133(11):2149–54. https://doi.org/10.1242/dev.02381.

    Article  CAS  PubMed  Google Scholar 

  6. Oftedal OT, Dhouailly D. Evo-devo of the mammary gland. J Mammary Gland Biol Neoplasia. 2013;18(2):105–20. https://doi.org/10.1007/s10911-013-9290-8.

    Article  PubMed  Google Scholar 

  7. Ji Q, Luo Z-X, Yuan C-X, Tabrum AR. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science. 2006;311(5764):1123–7. https://doi.org/10.1126/science.1123026.

    Article  CAS  PubMed  Google Scholar 

  8. Plikus M, Wang WP, Liu J, Wang X, Jiang T-X, Chuong C-M. Morpho-regulation of ectodermal organs: integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol. 2004;164(3):1099–114. https://doi.org/10.1016/S0002-9440(10)63197-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mayer JA, Foley J, De La Cruz D, Chuong C-M, Widelitz R. Conversion of the nipple to hair-bearing epithelia by lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface. Am J Pathol. 2008;173(5):1339–48. https://doi.org/10.2353/ajpath.2008.070920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin T, Marugán-Lobón J, Vullo R, Martín-Abad H, Luo Z-X, Buscalioni AD. A Cretaceous eutriconodont and integument evolution in early mammals. Nature. 2015;526(7573):380–4. https://doi.org/10.1038/nature14905.

    Article  CAS  PubMed  Google Scholar 

  11. Lavker RM, Sun T-T, Oshima H, Barrandon Y, Akiyama M, Ferraris C, et al. Hair follicle stem cells. J Invest Dermatol. 2003;8(1):28–38. https://doi.org/10.1046/j.1523-1747.2003.12169.x.

    Article  Google Scholar 

  12. Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3(1):33–43. https://doi.org/10.1016/j.stem.2008.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyazaki M, Man WC, Ntambi JM. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr. 2001;131(9):2260–8. https://doi.org/10.1093/jn/131.9.2260.

    Article  CAS  PubMed  Google Scholar 

  14. Stenn KS, Zheng Y, Parimoo S. Phylogeny of the hair follicle: the sebogenic hypothesis. J Invest Dermatol. 2008;128(6):1576–8. https://doi.org/10.1038/sj.jid.5701200.

    Article  CAS  PubMed  Google Scholar 

  15. Jones LN. The hair fiber surface. In: Forslind B, Lindberg M, Norlen L, editors. Skin, hair, and nails: structure and function. Boca Raton: CRC Press; 2004. p. 285–317.

    Google Scholar 

  16. Vullo R, Girard V, Azar D, Néraudeau D. Mammalian hairs in early Cretaceous amber. Naturwissenschaften. 2010;97(7):683–7. https://doi.org/10.1007/s00114-010-0677-8.

    Article  CAS  PubMed  Google Scholar 

  17. Oftedal OT. The mammary gland and its origin during synapsid evolution. J Mammary Gland Biol Neoplasia. 2002;7(3):225–52. https://doi.org/10.1023/A:1022896515287.

    Article  PubMed  Google Scholar 

  18. Maderson PFA. Mammalian skin evolution: a reevaluation. Exp Dermatol. 2003;12(3):233–6. https://doi.org/10.1034/j.1600-0625.2003.00069.x.

    Article  CAS  PubMed  Google Scholar 

  19. Chernova OF, Zherebtsova OV. Architecture of vibrissae in eight rodent species of Ctenohystrica (Rodentia): a comparative SEM study. Zool Anz. 2023;307:54–69. https://doi.org/10.1016/j.jcz.2023.09.004.

    Article  Google Scholar 

  20. Hillenius WJ, Ruben JA. The evolution of endothermy in terrestrial vertebrates: who? when? why? Physiol Biochem Zool. 2004;77(6):1019–42. https://doi.org/10.1086/425185. PubMed PMID: 15674773.

    Article  PubMed  Google Scholar 

  21. Wheeler PE. The loss of functional body hair in man: the influence of thermal environment, body form and bipedality. J Hum Evol. 1985;14(1):23–8. https://doi.org/10.1016/S0047-2484(85)80091-9.

    Article  Google Scholar 

  22. Ruxton GD, Wilkinson DM. Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Natl Acad Sci. 2011;108(52):20965–9. https://doi.org/10.1073/pnas.1113915108.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abbasi AA. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle. Sci Rep. 2011;1(1):32. https://doi.org/10.1038/srep00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harland DP. Environment of the anagen follicle. In: Plowman JE, Harland DP, Deb-Choudhury S, editors. The hair fibre: proteins, structure and development. Singapore: Springer; 2018. p. 97–108.

    Chapter  Google Scholar 

  25. Blume U, Ferracin J, Verschoore M, Czernielewski JM, Schaefer H. Physiology of the vellus hair follicle: hair growth and sebum excretion. Br J Dermatol. 1991;124(1):21–8. https://doi.org/10.1111/j.1365-2133.1991.tb03277.x.

    Article  CAS  PubMed  Google Scholar 

  26. Blume U, Verschoore M, Poncet M, Czernielewski J, Orfanos CE, Schaefer H. The vellus hair follicle in acne: hair growth and sebum excretion. Br J Dermatol. 1993;129(1):23–7. https://doi.org/10.1111/j.1365-2133.1993.tb03306.x.

    Article  CAS  PubMed  Google Scholar 

  27. Hodges AL, Holland AC. Prevention and treatment of injuries and infections related to pubic hair removal. Nurs Womens Health. 2017;21(4):313–7. https://doi.org/10.1016/j.nwh.2017.06.001.

    Article  PubMed  Google Scholar 

  28. Ramsey S, Sweeney C, Fraser M, Oades G. Pubic hair and sexuality: a review. J Sex Med. 2009;6(8):2102–10. https://doi.org/10.1111/j.1743-6109.2009.01307.x.

    Article  PubMed  Google Scholar 

  29. Pagel M, Bodmer W. A naked ape would have fewer parasites. Proc R Soc Lond Ser B Biol Sci. 2003;270(suppl_1):S117–S9. https://doi.org/10.1098/rsbl.2003.0041.

    Article  Google Scholar 

  30. van der Veen C, Handjiski B, Paus R, Müller-Röver S, Maurer M, Eichmüller S, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol. 1999;113(4):523–32. https://doi.org/10.1046/j.1523-1747.1999.00740.x.

    Article  PubMed  Google Scholar 

  31. Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94. https://doi.org/10.1152/physrev.2001.81.1.449. PubMed PMID: 11152763.

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Zhang H, Duan E. Epidermal development in mammals: key regulators, signals from beneath, and stem cells. Int J Mol Sci. 2013;14(6):10869–95. https://doi.org/10.3390/ijms140610869. PubMed PMID: 23708093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fraser EE, Longstaffe FJ, Fenton MB. Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can J Zool. 2013;91(8):533–44. https://doi.org/10.1139/cjz-2013-0072.

    Article  Google Scholar 

  34. Ling JK. Pelage and molting in wild mammals with special reference to aquatic forms. Q Rev Biol. 1970;45(1):16–54. https://doi.org/10.1086/406361. PubMed PMID: 5446769.

    Article  CAS  PubMed  Google Scholar 

  35. Caro T. The adaptive significance of coloration in mammals. Bioscience. 2005;55(2):125–36. https://doi.org/10.1641/0006-3568(2005)055[0125:Tasoci]2.0.Co;2.

    Article  Google Scholar 

  36. Zimova M, Hackländer K, Good JM, Melo-Ferreira J, Alves PC, Mills LS. Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol Rev. 2018;93(3):1478–98. https://doi.org/10.1111/brv.12405.

    Article  PubMed  Google Scholar 

  37. King CM, Moody JE. The biology of the stoat (Mustela erminea) in the National Parks of New Zealand V. Moult and colour change. NZ J Zool. 1982;9(1):119–30. https://doi.org/10.1080/03014223.1982.10423841.

    Article  Google Scholar 

  38. Zimova M, Mills LS, Nowak JJ. High fitness costs of climate change-induced camouflage mismatch. Ecol Lett. 2016;19(3):299–307. https://doi.org/10.1111/ele.12568.

    Article  PubMed  Google Scholar 

  39. Koneru M, Caro T. Animal coloration in the Anthropocene. Front Ecol Evol. 2022;10:10. https://doi.org/10.3389/fevo.2022.857317.

    Article  Google Scholar 

  40. Maurel D, Coutant C, Boissin-Agasse L, Boissin J. Seasonal moulting patterns in three fur bearing mammals: the European badger (Meles meles L.), the red fox (Vulpes vulpes L.), and the mink (Mustela vison). A morphological and histological study. Can J Zool. 1986;64(8):1757–64. https://doi.org/10.1139/z86-265.

    Article  Google Scholar 

  41. Kryltzov VAI. Moult topography of Microtinae, other rodents, and lagomorphs. Z Säugetierkd. 1964;29(1):1–17. https://doi.org/10.5281/zenodo.13666398.

    Article  Google Scholar 

  42. Unnsteinsdóttir ER. Íslenski melrakkinn – þriðji hluti. Náttúrufræðingurinn. 2024;94(1):24–37.

    Google Scholar 

  43. Jenkins JR. Skin disorders of the rabbit. Vet Clin North Am Exot Anim Pract. 2001;4(2):543–63. https://doi.org/10.1016/S1094-9194(17)30042-7.

    Article  CAS  PubMed  Google Scholar 

  44. D’Alba L, Shawkey MD. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol Rev. 2019;99(1):1–19. https://doi.org/10.1152/physrev.00059.2017. PubMed PMID: 30255724.

    Article  CAS  PubMed  Google Scholar 

  45. Barsh GS. Coat color mutations, animals. In: Brenner S, Miller JH, editors. Encyclopedia of genetics. New York: Academic Press; 2001. p. 397–401.

    Chapter  Google Scholar 

  46. Caro T, Mallarino R. Coloration in mammals. Trends Ecol Evol. 2020;35(4):357–66. https://doi.org/10.1016/j.tree.2019.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lewin RA, Robinson PT. The greening of polar bears in zoos. Nature. 1979;278(5703):445–7. https://doi.org/10.1038/278445a0.

    Article  CAS  PubMed  Google Scholar 

  48. Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, et al. What’s the use of generating melanin? Exp Dermatol. 1999;8(2):153–64. https://doi.org/10.1111/j.1600-0625.1999.tb00365.x.

    Article  CAS  PubMed  Google Scholar 

  49. McNamara ME, Rossi V, Slater TS, Rogers CS, Ducrest AL, Dubey S, et al. Decoding the evolution of melanin in vertebrates. Trends Ecol Evol. 2021;36(5):430–43. https://doi.org/10.1016/j.tree.2020.12.012.

    Article  CAS  PubMed  Google Scholar 

  50. Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16(5):523–31. https://doi.org/10.1034/j.1600-0749.2003.00072.x.

    Article  PubMed  Google Scholar 

  51. Delhey K. Gloger’s rule. Curr Biol. 2017;27(14):R689–R91. https://doi.org/10.1016/j.cub.2017.04.031.

    Article  CAS  PubMed  Google Scholar 

  52. Setaluri V, Jayanthy A. Coat color mutations, animals. In: Maloy S, Hughes K, editors. Brenner’s encyclopedia of genetics. 2nd ed. San Diego: Academic Press; 2013. p. 58–60.

    Chapter  Google Scholar 

  53. Rensch VB. Das prinzip geographischer rassenkreise und das problem der artbildung. Berlin: Gebrüder Borntraeger; 1929.

    Google Scholar 

  54. Delhey K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol Rev. 2019;94(4):1294–316. https://doi.org/10.1111/brv.12503.

    Article  PubMed  Google Scholar 

  55. Görnitz K. Ueber die Wirkung klimatischer Faktoren auf die Pigmentfarben der Vogelfedern. J Ornithol. 1923;71(4):456–511. https://doi.org/10.1007/BF01975089.

    Article  Google Scholar 

  56. Howell N, Sheard C, Koneru M, Brockelsby K, Ono K, Caro T. Aposematism in mammals. Evolution. 2021;75(10):2480–93. https://doi.org/10.1111/evo.14320.

    Article  PubMed  Google Scholar 

  57. Wacker CB, McAllan BM, Körtner G, Geiser F. The functional requirements of mammalian hair: a compromise between crypsis and thermoregulation? Sci Nat. 2016;103(7):53. https://doi.org/10.1007/s00114-016-1376-x.

    Article  CAS  Google Scholar 

  58. Hirth DH, McCullough DR. Evolution of alarm signals in ungulates with special reference to white-tailed deer. Am Nat. 1977;111(977):31–42. https://doi.org/10.1086/283136.

    Article  Google Scholar 

  59. Maloiy GMO, Kamau JMZ, Shkolnik A, Meir M, Arieli R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda) (Mammalia)*. J Zool. 1982;198(3):279–91. https://doi.org/10.1111/j.1469-7998.1982.tb02076.x.

    Article  Google Scholar 

  60. Blix AS. Adaptations to polar life in mammals and birds. J Exp Biol. 2016;219(8):1093–105. https://doi.org/10.1242/jeb.120477.

    Article  PubMed  Google Scholar 

  61. Prestrud P. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic. 1991;44(2):132–8. https://doi.org/10.14430/arctic1529.

    Article  Google Scholar 

  62. Bilodeau F, Gauthier G, Berteaux D. The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecologia. 2013;172(4):1007–16. https://doi.org/10.1007/s00442-012-2549-8. PubMed PMID: WOS:000322180000009.

    Article  PubMed  Google Scholar 

  63. Barnes BM. Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator. Science. 1989;244(4912):1593–5. https://doi.org/10.1126/science.2740905.

    Article  CAS  PubMed  Google Scholar 

  64. Yan J, Barnes BM, Kohl F, Marr TG. Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics. 2008;32(2):170–81. https://doi.org/10.1152/physiolgenomics.00075.2007. PubMed PMID: 17925484.

    Article  CAS  PubMed  Google Scholar 

  65. Williams TD, Allen DD, Groff JM, Glass RL. An analysis of California sea otter (Enhydra lutris) pelage and integument. Mar Mamm Sci. 1992;8(1):1–18. https://doi.org/10.1111/j.1748-7692.1992.tb00120.x.

    Article  Google Scholar 

  66. Kuhn RA. Comparative analysis of structural and functional hair coat characteristics, including heat loss regulation, in the Lutrinae (Carnivora: Mustelidae). Hamburg: Universität Hamburg; 2009.

    Google Scholar 

  67. Tarasoff FJ, Bisaillon A, Piérard J, Whitt AP. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can J Zool. 1972;50(7):915–29. https://doi.org/10.1139/z72-124. PMID: 5055119.

    Article  CAS  PubMed  Google Scholar 

  68. Scholander PF, Walters V, Hock R, Irving L. Body insulation of some arctic and tropical mammals and birds. Biol Bull. 1950;99(2):225–36. https://doi.org/10.2307/1538740. PubMed PMID: 14791421.

    Article  CAS  PubMed  Google Scholar 

  69. Meyer W, Neurand K, Schnapper A. SEM demonstration of elastic fibres in the integument of small and densely-haired mammals. Folia Morphol (Warsz). 2000;59(4):279–83.

    CAS  PubMed  Google Scholar 

  70. Reinhold LM, Rymer TL, Helgen KM, Wilson DT. Photoluminescence in mammal fur: 111 years of research. J Mammal. 2023;104(4):892–906. https://doi.org/10.1093/jmammal/gyad027.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hughes B, Bowman J, Stock NL, Burness G. Using mass spectrometry to investigate fluorescent compounds in squirrel fur. PLoS One. 2022;17(2):e0257156. https://doi.org/10.1371/journal.pone.0257156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Toussaint SLD, Ponstein J, Thoury M, Métivier R, Kalthoff DC, Habermeyer B, et al. Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integr Zool. 2023;18(1):15–26. https://doi.org/10.1111/1749-4877.12655.

    Article  CAS  PubMed  Google Scholar 

  73. Tumlison CR, Tumlison TL. Investigation of fluorescence in selected mammals of Arkansas. J Ark Acad Sci. 2021;75(1):29–35. https://doi.org/10.54119/jaas.2021.7515.

    Article  Google Scholar 

  74. Turner GG, Meteyer CU, Barton H, Gumbs JF, Reeder DM, Overton B, et al. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J Wildl Dis. 2014;50(3):566–73. https://doi.org/10.7589/2014-03-058.

    Article  PubMed  Google Scholar 

  75. Kohler AM, Olson ER, Martin JG, Anich PS. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J Mammal. 2019;100(1):21–30. https://doi.org/10.1093/jmammal/gyy177.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2025 Canadian Museum of Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fontaine-Topaloff, J., Fauteux, D., Khidas, K. (2025). Trichology. In: Hair Atlas of Canadian Mammals. Springer, Cham. https://doi.org/10.1007/978-3-032-00006-4_1

Download citation

Keywords

Publish with us

Policies and ethics