Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Macromolecular Crowding in Cell Stress and Death

  • Chapter
  • First Online:
(Macro)Molecular Crowding

Part of the book series: Subcellular Biochemistry ((SCBI,volume 109))

  • 177 Accesses

Abstract

To study macromolecular crowding (MC) in living cells, one needs a method to measure it. Several existing approaches to quantify MC address slightly different aspects of crowding. If we define MC through protein concentration, it can be measured by quantitative phase imaging coupled with volume determination; both can be realized on a standard bright-field microscope. Osmotic cell theory can help identify the essential factors that control MC. Nevertheless, there are still many gaps in our understanding of MC regulation and, in particular, of the interrelationship between MC and cell stress or damage. Experiments show that MC is subject to homeostatic control and returns to its resting values following various disturbances. Severe cell damage causes an accumulation of water and a decrease in MC; however, based on limited data, water accumulation is restricted to one area of the cell (necrotic bleb), while the rest of the cell remains at normal density. Similar heterogeneous water distribution is observed in vacuolated mammalian cells. Intermediate degrees of stress tend to produce dehydration and an increase in MC. Apoptotic shrinkage is one common example of stress-induced dehydration, but the effect may be more general. A hypothesis on its mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abuhattum S, Kim K, Franzmann TM, Eßlinger A, Midtvedt D, Schlüßler R, Möllmert S, Kuan HS, Alberti S, Zaburdaev V, Guck J (2018) Intracellular mass density increase is accompanying but not sufficient for stiffening and growth arrest of yeast cells. Front Phys 6:131

    Article  Google Scholar 

  • Algie JE (1980) The heat resistance of bacterial spores due to their partial dehydration by reverse osmosis. Curr Microbiol 3:287–290

    Article  Google Scholar 

  • Armstrong CM (2003) The Na/K pump, Cl ion, and osmotic stabilization of cells. Proc Natl Acad Sci USA 100:6257–6262

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagatolli LA, Mangiarotti A, Stock RP (2021) Cellular metabolism and colloids: Realistically linking physiology and biological physical chemistry. Prog Biophys Mol Bio 162:79–88

    Article  Google Scholar 

  • Bakken LR, Olsen RA (1983) Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol 45:1188–1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  PubMed  Google Scholar 

  • Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 130:401–409

    Article  PubMed  Google Scholar 

  • Beaman TC, Greenamyre JT, Corner TR, Pankratz HS, Gerhardt P (1982) Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio. J Bacteriol 150:870–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas P, Ray D, Jana S, Das J, Sinha B, Sinha DK (2022) Probing the role of macromolecular crowding in cell volume regulation using fluorescence anisotropy. BioRxiv:2022–2004

    Google Scholar 

  • Boersma AJ, Liu B, Poolman B (2015) A sensor for quantification of macromolecular crowding in living cells. Biophys J 108:114a

    Article  Google Scholar 

  • Bortner CD, Cidlowski JA (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol 56:1549–1559

    Article  PubMed  Google Scholar 

  • Bortner CD, Cidlowski JA (2020) Ions, the movement of water and the apoptotic volume decrease. Front Cell Dev Biol 8:611211

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR (2022) WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 185:4488–4506

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulthuis EP, Dieteren CE, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EM, Podhumljak E, Hink MA, Hesp LF, Rosa HS, Malik AN (2023) Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J 42:e108533

    Article  PubMed  PubMed Central  Google Scholar 

  • Burg MB (2000) Macromolecular crowding as a cell volume sensor. Cell Physiol Biochem 10:251–256

    Article  PubMed  Google Scholar 

  • Cameron I, Fullerton G (2014) Properties and size of multiple non-bulk water fractions on proteins and in cells. Water 4:76–90

    Google Scholar 

  • Cameron IL, Kanal KM, Fullerton GD (2006) Role of protein conformation and aggregation in pumping water in and out of a cell. Cell Biol Int 30:78–85

    Article  PubMed  Google Scholar 

  • Cameron IL, Lanctot AC, Fullerton GD (2011) The molecular stoichiometric hydration model (SHM) as applied to tendon/collagen, globular proteins and cells. Cell Biol Int 35:1205–1215

    Article  PubMed  Google Scholar 

  • Cayley S, Lewis BA, Guttman HJ, Record MT Jr (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J Mol Biol 222:281–300

    Article  PubMed  Google Scholar 

  • Chang DW, Ditsworth D, Liu H, Srinivasula SM, Alnemri ES, Yang X (2003) Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J Biol Chem 278:16466–16469

    Article  PubMed  Google Scholar 

  • Clements RJ, Guo R, Petruccelli JC, Model MA. Label‐Free quantification of protein density in living cells. Current Protocols. 2025 Apr;5(4):e70130

    Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol Regul Integr Comp Physiol 246:R133–R151

    Article  Google Scholar 

  • Colclasure GC, Parker JC (1991) Cytosolic protein concentration is the primary volume signal in dog red cells. J Gen Physiol 98:881–892

    Article  PubMed  Google Scholar 

  • Colclasure GC, Parker JC (1992) Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells. J Gen Physiol 100:1–10

    Article  PubMed  Google Scholar 

  • Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Daimon M, Masumura A (2007) Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl Opt 46:3811–3820

    Article  PubMed  Google Scholar 

  • De Bruijne AW, Van Steveninck J (1970) Apparent nonsolvent water and osmotic behavior of yeast cells. Biochim Biophys Acta Biomembr 196:45–52

    Article  Google Scholar 

  • de Vries YP (2006) Bacillus cereus spore formation, structure and germination. Dissertation, Wageningen University

    Google Scholar 

  • Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK (2018) mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174:338–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Du J, Tao J, Kleinhans FW, Mazur P, Critser JK (1994) Water volume and osmotic behaviour of mouse spermatozoa determined by electron paramagnetic resonance. Reprod 101:37–42

    Article  Google Scholar 

  • Dupre AM, Hempling HG (1978) Osmotic properties of Ehrlich ascites tumor cells during the cell cycle. J Cell Physiol 97:381–395

    Article  PubMed  Google Scholar 

  • Eisenberg T, Carmona-Gutierrez D, Büttner S, Tavernaraki N, Madeo F (2010) Necrosis in yeast. Apoptosis 15:257–268

    Article  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Fels J, Orlov SN, Grygorczyk R (2009) The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys J 96:4276–4285

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser JA, Huang CLH (2007) Quantitative techniques for steady-state calculation and dynamic integrated modelling of membrane potential and intracellular ion concentrations. Prog Biophys Mol Biol 94:336–372

    Article  PubMed  Google Scholar 

  • Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074

    Article  PubMed  PubMed Central  Google Scholar 

  • Fullerton GD, Kanal KM, Cameron IL (2006) On the osmotically unresponsive water compartment in cells. Cell Biol Int 30:74–77

    Article  PubMed  Google Scholar 

  • Gaglia G, Rashid R, Yapp C, Joshi GN, Li CG, Lindquist SL, Sarosiek KA, Whitesell L, Sorger PK, Santagata S (2020) HSF1 phase transition mediates stress adaptation and cell fate decisions. Nature Cell Biol 22:151–158

    Article  PubMed  Google Scholar 

  • Garlid KD (1999) The state of water in biological systems. Int Rev Cytol 192:281–302, Elsevier

    Google Scholar 

  • Gibbons BA, Kharel P, Robinson LC, Synowicki RA, Model MA (2016) Volume measurements and fluorescent staining indicate an increase in permeability for organic cation transporter substrates during apoptosis. Exp Cell Res 344:112–119

    Article  PubMed  Google Scholar 

  • Gnutt D, Gao M, Brylski O, Heyden M, Ebbinghaus S (2015) Excluded-volume effects in living cells. Angew Chem Int Ed 54:2548–2551

    Article  Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4:7–13

    Article  PubMed  Google Scholar 

  • Halpin JC, Huang B, Sun M, Street TO (2016) Crowding activates heat shock protein 90. J Biol Chem 291:6447–6455

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey AH, Gallagher JS, Sengers JL (1998) Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density. J Phys Chem Ref Data 27:761–774

    Article  Google Scholar 

  • Häussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313:697–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Heimlicher MB, Bächler M, Liu M, Ibeneche-Nnewihe C, Florin EL, Hoenger A, Brunner D (2019) Reversible solidification of fission yeast cytoplasm after prolonged nutrient starvation. J Cell Sci 132:jcs231688

    Article  PubMed  PubMed Central  Google Scholar 

  • Hempling HG, Thompson S, Dupre A (1977) Osmotic properties of human lymphocyte. J Cell Physiol 93:293–302

    Article  PubMed  Google Scholar 

  • Heuser J (2002) Whatever happened to the ‘microtrabecular concept’? Biol Cell 94:561–596

    Article  PubMed  Google Scholar 

  • Hinke JAM (1970) Solvent water for electrolytes in the muscle fiber of the giant barnacle. J Gen Physiol 56:521–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Hishida M, Kaneko A, Yamamura Y, Saito K (2023) Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J Phys Chem B 127:6296–6305

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  PubMed  Google Scholar 

  • Hollembeak JE, Model MA (2021) Stability of intracellular protein concentration under extreme osmotic challenge. Cells 10:3532

    Article  PubMed  PubMed Central  Google Scholar 

  • Holt LJ, Delarue M (2023) Macromolecular crowding: sensing without a sensor. Curr Opin Cell Biol 85:102269

    Article  PubMed  Google Scholar 

  • Hortelano S, Zeini M, Castrillo A, Alvarez AM, Bosca L (2002) Induction of apoptosis by nitric oxide in macrophages is independent of apoptotic volume decrease. Cell Death Differ 9:643–650

    Article  PubMed  Google Scholar 

  • Hu M, Zhou N, Cai W, Xu H (2022) Lysosomal solute and water transport. J Cell Biol 221:e202109133

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang M, Hull CM (2017) Sporulation: how to survive on planet Earth (and beyond). Curr Genet 63:831–838

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudder A, Nathanson L, Deutscher MP (2003) Organization of mammalian cytoplasm. Mol Cell Biol 23:9318–9326

    Article  PubMed  PubMed Central  Google Scholar 

  • Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci 71:194–204

    Article  PubMed  Google Scholar 

  • Iwasa Y, Hirono C, Sugita M, Takemoto K, Shiba Y (2001) External Cl-dependent formation of watery vacuoles by long-term hypotonic shock in 3T3-L1 cells. Cell Physiol Biochem 11:311–320, External Cl<sup>-</sup>-Dependent Formation of Watery Vacuoles by Long-Term Hypotonic Shock in 3T3-L1 Cells

    Google Scholar 

  • Jentsch TJ (2016) VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nature Rev Mol Cell Biol 17:293–307

    Article  Google Scholar 

  • Jiang L, Paone S, Caruso S, Atkin-Smith GK, Phan TK, Hulett MD, Poon IK (2017) Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep 7:14444

    Article  PubMed  PubMed Central  Google Scholar 

  • Joyner RP, Tang JH, Helenius J, Dultz E, Brune C, Holt LJ, Huet S, Müller DJ, Weis K (2016) A glucose-starvation response regulates the diffusion of macromolecules. elife 5:e09376

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaji T, Yoshida S, Kawai K, Fuchigami Y, Watanabe W, Kubodera H, Kishimoto T (2010) ASK3, a novel member of the apoptosis signal-regulating kinase family, is essential for stress-induced cell death in HeLa cells. Biochem Biophys Res Commun 395:213–218

    Article  PubMed  Google Scholar 

  • Kasim NR, Kuželová K, Holoubek A, Model MA (2013) Live fluorescence and transmission-through-dye microscopic study of actinomycin D-induced apoptosis and apoptotic volume decrease. Apoptosis 18:521–532

    Article  PubMed  Google Scholar 

  • Kay AR (2017) How cells can control their size by pumping ions. Front Cell Dev Biol 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerch G (2018) Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. Int J Biol Macromol 118:1310–1318

    Article  PubMed  Google Scholar 

  • Kerr JFR (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    Article  PubMed  Google Scholar 

  • Klei TR, Dalimot JJ, Beuger BM, Veldthuis M, Ichou FA, Verkuijlen PJ, Seignette IM, Ligthart PC, Kuijpers TW, van Zwieten R, van Bruggen R (2020) The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv 4:6218–6229

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo H (2015) Ultrastructure of cytoplasmic matrix. J Integr Creat Stud 2015:1–9

    Google Scholar 

  • Konopka MC, Sochacki KA, Bratton BP, Shkel IA, Record MT, Weisshaar JC (2009) Cytoplasmic protein mobility in osmotically stressed Escherichia coli. J Bacteriol 191:231–237

    Article  PubMed  Google Scholar 

  • Kreuzer HW, Quaroni L, Podlesak DW, Zlateva T, Bollinger N, McAllister A, Lott MJ, Hegg EL (2012) Detection of metabolic fluxes of O and H atoms into intracellular water in mammalian cells. PLoS One 7:e39685

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunzelmann K (2016) Ion channels in regulated cell death. Cell Mol Life Sci 73:2387–2403

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova IM, Turoverov KK, Uversky VN (2014) What macromolecular crowding can do to a protein. Int J Mol Sci 15:23090–23140

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecinski S, Shepherd JW, Frame L, Hayton I, MacDonald C, Leake MC (2021) Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. Curr Top Membr 88:75–118, Elsevier

    Google Scholar 

  • Lee LD (2024) Aging changes cell mechanics and dynamics with a backbone of cytoplasmic crowding. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  • Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  PubMed  PubMed Central  Google Scholar 

  • Lew VL (2022) The predictive power of cellular homeostasis models illustrated with a study of the Gardos effect. Paracelsus Proc Exp Med 1:1–13

    Article  Google Scholar 

  • Lewis CL, Craig CC, Senecal AG (2014) Mass and density measurements of live and dead gram-negative and gram-positive bacterial populations. Appl Environ Microbiol 80:3622–3631

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindner AB, Demarez A (2009) Protein aggregation as a paradigm of aging. Biochim Biophys Acta Gen Subj 1790:980–996

    Article  Google Scholar 

  • Linker CS (1987) Mechanisms of volume regulation in Mycoplasma gallisepticum. Dissertation, Harvard University

    Google Scholar 

  • Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Hasrat Z, Poolman B, Boersma AJ (2019) Decreased effective macromolecular crowding in Escherichia coli adapted to hyperosmotic stress. J Bacteriol 201:e00708–e00718

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Moscvin M, Oh S, Chen T, Choi W, Evans B, Rowell SM, Nadeem O, Mo CC, Sperling AS, Anderson KC (2023) Characterizing dry mass and volume changes in human multiple myeloma cells upon treatment with proteotoxic and genotoxic drugs. Clin Exp Med 23:3821–3832

    Article  PubMed  PubMed Central  Google Scholar 

  • Luby-Phelps K (1999) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221, Elsevier

    Google Scholar 

  • Luo P, Lin M, Lin M, Zhu D, Wang Z, Shen J, Yang B, He Q (2010) Bortezomib induces apoptosis in human neuroblastoma CHP126 cells. Int J Pharm Sci 65:213–218

    Google Scholar 

  • Lüscher BP, Vachel L, Ohana E, Muallem S (2020) Cl as a bona fide signaling ion. Am J Physiol Cell Physiol 318:C125–C136

    Article  PubMed  Google Scholar 

  • Lustyik G, Nagy I (1985) Alterations of the intracellular water and ion concentrations in brain and liver cells during aging as revealed by energy dispersive X-ray microanalysis of bulk specimens. Scanning Electron Microsc 1:323–337

    Google Scholar 

  • Lustyik G, Nagy I (1988) Age dependent dehydration of postmitotic cells as measured by X-ray microanalysis of bulk specimens. Scanning Microsc 2:289–299

    PubMed  Google Scholar 

  • Lustyik G (1986) Age-dependent alterations of the intracellular water and electrolyte content of heart and muscle cells. Arch Gerontol Geriatr 5:291–296

    Article  PubMed  Google Scholar 

  • Luu BE, Wijenayake S, Malik AI, Storey KB (2018) The regulation of heat shock proteins in response to dehydration in Xenopus laevis. Cell Stress Chaperones 23:45–53

    Article  PubMed  Google Scholar 

  • Maisonneuve E, Ezraty B, Dukan S (2008) Protein aggregates: an aging factor involved in cell death. J Bacteriol 190:6070–6075

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D (2023) Hsf1 and the molecular chaperone Hsp90 support a “rewiring stress response” leading to an adaptive cell size increase in chronic stress. BioRxiv:2023–2001

    Google Scholar 

  • Marini G, Nüske E, Leng W, Alberti S, Pigino G (2020) Reorganization of budding yeast cytoplasm upon energy depletion. Mol Biol Cell 31:1232–1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Minton AP (2020) Water loss in aging erythrocytes provides a clue to a general mechanism of cellular senescence. Biophys J 119:2039–2044

    Article  PubMed  PubMed Central  Google Scholar 

  • Minton AP, Colclasure GC, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci USA 89:10504–10506

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyagi T, Yamanaka Y, Harada Y, Narumi S, Hayamizu Y, Kuroda M, Kanekura K (2021) An improved macromolecular crowding sensor CRONOS for detection of crowding changes in membrane-less organelles under stressed conditions. Biochem Biophys Res Commun 583:29–34

    Article  PubMed  Google Scholar 

  • Model MA, Petruccelli JC (2018) Intracellular macromolecules in cell volume control and methods of their quantification. Curr Top Membr 81:237–289, Elsevier

    Google Scholar 

  • Model MA (2014) Possible causes of apoptotic volume decrease: an attempt at quantitative review. Am J Physiol Cell Physiol 306:C417–C424

    Article  PubMed  Google Scholar 

  • Model MA (2021) Studying cell volume beyond cell volume. Curr Top Membr 88:165–188, Elsevier

    Google Scholar 

  • Model MA, Guo R, Fasina K, Jin R, Clements RJ, Leff LG (2024) Measurement of protein concentration in bacteria and small organelles under a light transmission microscope. J Mol Recognit 37:e3099

    Article  PubMed  PubMed Central  Google Scholar 

  • Model MA, Hollembeak JE, Kurokawa M (2021) Macromolecular crowding: a hidden link between cell volume and everything else. Cell Physiol Biochem 55:25–40

    Article  PubMed  Google Scholar 

  • Model MA, Mahajan A, Düsterwald KM, Dmitriev AV (2023) Nucleic acids regulate intracellular ions and membrane potential. Paracelsus Proc Exp Med 2:13–29

    Google Scholar 

  • Model MA, Mudrak NJ, Rana PS, Clements RJ (2018) Staurosporine-induced apoptotic water loss is cell-and attachment-specific. Apoptosis 23:449–455

    Article  PubMed  Google Scholar 

  • Clements, Robert J., Ruixin Guo, Jonathan C. Petruccelli, and Michael A. Model. "Label‐Free quantification of protein density in living cells." Current Protocols 5, no. 4 (2025): e70130.

    Google Scholar 

  • Mongin AA, Orlov SN (2001) Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8:77–88

    Article  PubMed  Google Scholar 

  • Mouton SN, Boersma AJ, Veenhoff LM (2023) A physicochemical perspective on cellular ageing. Trends Biochem Sci 48:949–962

    Article  PubMed  Google Scholar 

  • Mouton SN, Thaller DJ, Crane MM, Rempel IL, Terpstra OT, Steen A, Kaeberlein M, Lusk CP, Boersma AJ, Veenhoff LM (2020) A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast. elife 9:e54707

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudrak NJ, Rana PS, Model MA (2018) Calibrated brightfield-based imaging for measuring intracellular protein concentration. Cytometry A 93:297–304

    Article  PubMed  Google Scholar 

  • Mulkern RV, Bleier AR, Adzamli IK, Spencer RG, Sandor T, Jolesz FA (1989) Two-site exchange revisited: a new method for extracting exchange parameters in biological systems. Biophys J 55:221–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Munder MC, Midtvedt D, Franzmann T, Nuske E, Otto O, Herbig M, Ulbricht E, Mülle P, Taubenberger A, Maharana S, Malinovska L (2016) A pH-driven transition of the cytoplasm from a fluid-to a solid-like state promotes entry into dormancy. elife 5:e09347

    Article  PubMed  PubMed Central  Google Scholar 

  • Naito Y, Kaliaperumal V, Hamaguchi HO (2005) Inorganic phosphate dynamics and starvation induced necrosis in yeast cells by Raman microspectroscopy. Spectroscopy 36:837–839

    Google Scholar 

  • Neurohr GE, Amon A (2020) Relevance and regulation of cell density. Trends Cell Biol 30:213–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, Miettinen TP, Vaites LP, Soares LM, Paulo JA, Harper JW (2019) Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176:1083–1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Oillic S, Lemoine E, Gros JB, Kondjoyan A (2011) Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath—Effect of sample dimensions and prior freezing and ageing. Meat Sci 88:338–346

    Article  PubMed  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldewurtel ER, Kitahara Y, van Teeffelen S (2021) Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density. Proc Natl Acad Sci USA 118:e2021416118

    Article  PubMed  PubMed Central  Google Scholar 

  • Orlov SN, Platonova AA, Hamet P, Grygorczyk R (2013) Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. Am J Physiol Cell Physiol 305:C361–C372

    Article  PubMed  Google Scholar 

  • Orlov SN, Shiyan A, Boudreault F, Ponomarchuk O, Grygorczyk R (2018) Search for upstream cell volume sensors: the role of plasma membrane and cytoplasmic hydrogel. Curr Topics Membr 81:53–82

    Article  Google Scholar 

  • Ozturk SS, Palsson BØ (1991) Effect of medium osmolarity on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 37:989–993

    Article  PubMed  Google Scholar 

  • Pang B, Yu X, Bowker B, Zhang J, Yang Y, Zhuang H (2021) Effect of meat temperature on moisture loss, water properties, and protein profiles of broiler pectoralis major with the woody breast condition. Poult Sci 100:1283–1290

    Article  PubMed  Google Scholar 

  • Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194

    Article  PubMed  Google Scholar 

  • Pasantes-Morales H (2016) Channels and volume changes in the life and death of the cell. Mol Pharmacol 90:358–370

    Article  PubMed  Google Scholar 

  • Pittas T, Zuo W, Boersma AJ (2023) Cell wall damage increases macromolecular crowding effects in the Escherichia coli cytoplasm. iScience 26:106367

    Article  PubMed  PubMed Central  Google Scholar 

  • Platonova A, Boudreault F, Kapilevich LV, Maksimov GV, Ponomarchuk O, Grygorczyk R, Orlov SN (2014) Temperature-induced inactivation of cytoplasmic biogel osmosensing properties is associated with suppression of regulatory volume decrease in A549 cells. J Membr Biol 247:571–579

    Article  PubMed  Google Scholar 

  • Porus M, Labbez C, Maroni P, Borkovec M (2011) Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations. J Chem Phys 135:064701

    Article  PubMed  Google Scholar 

  • Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16

    Article  PubMed  Google Scholar 

  • Rana PS, Gibbons BA, Vereninov AA, Yurinskaya VE, Clements RJ, Model TA, Model MA (2019) Calibration and characterization of intracellular Asante Potassium Green probes, APG-2 and APG-4. Anal Biochem 567:8–13

    Article  PubMed  Google Scholar 

  • Rana PS, Model MA (2020) A reverse-osmosis model of apoptotic shrinkage. Front Cell Dev Biol 8:588721

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana PS, Kurokawa M, Model MA (2020) Evidence for macromolecular crowding as a direct apoptotic stimulus. J Cell Sci 133:243931

    Article  Google Scholar 

  • Rana PS, Mudrak NJ, Lopez R, Lynn M, Kershner L, Model MA (2017) Phase separation in necrotic cells. Biochem Biophys Res Commun 492:300–303

    Article  PubMed  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41:970–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Roman SG, Chebotareva NA, Kurganov BI (2017) Anti-aggregation activity of small heat shock proteins under crowded conditions. Int J Biol Macromol 100:97–103

    Article  PubMed  Google Scholar 

  • Savage B, McFadden PR, Hanson SR, Harker LA (1986) The relation of platelet density to platelet age: survival of low-and high-density 111indium-labeled platelets in baboons. Blood 68:386–393

    Article  PubMed  Google Scholar 

  • Schliess F, Reinehr R, Häussinger D (2007) Osmosensing and signaling in the regulation of mammalian cell function. FEBS J 274:5799–5803

    Article  PubMed  Google Scholar 

  • Schmidt S, Flueckiger J, Wu W, Grist SM, Fard ST, Donzella V, Khumwan P, Thompson ER, Wang Q, Kulik P, Wang X (2014) Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. In: Biosensing and nanomedicine VII, vol 9166, 71–108. SPIE

    Google Scholar 

  • Setlow P (2016) In: Driks A, Eichenberger P (eds) Spore resistance properties. In The bacterial spore: from molecules to systems. ASM Press, pp 201–215

    Chapter  Google Scholar 

  • Shatrova A, Burova E, Pugovkina N, Domnina A, Nikolsky N, Marakhova I (2022) Monovalent ions and stress-induced senescence in human mesenchymal endometrial stem/stromal cells. Sci Rep 12:11194

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Westfall CS, Kao J, Odermatt PD, Anderson SE, Cesar S, Sievert M, Moore J, Gonzalez CG, Zhang L, Elias JE (2021) Starvation induces shrinkage of the bacterial cytoplasm. Proc Natl Acad Sci USA 118:e2104686118

    Article  PubMed  PubMed Central  Google Scholar 

  • Son S, Kang JH, Oh S, Kirschner MW, Mitchison TJ, Manalis S (2015) Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J Cell Biol 211:757–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Steen B (1988) Body composition and aging. Nutr Rev 46:45–51

    Article  PubMed  Google Scholar 

  • Su KH, Dai C (2017) mTORC1 senses stresses: coupling stress to proteostasis. BioEssays 39:1600268

    Article  Google Scholar 

  • Subramanya AR, Boyd-Shiwarski CR (2023) Molecular crowding: physiologic sensing and control. Annu Rev Physiol 86:429–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Summers JC, Trais L, Lajvardi R, Hergan D, Buechler R, Chang H, Pena-Rasgado C, Rasgado-Flores H (1997) Role of concentration and size of intracellular macromolecules in cell volume regulation. Am J Physiol Cell Physiol 273:C360–C370

    Article  Google Scholar 

  • Theisen A, Johann C, Deacon MP, Harding SE (2000) Refractive increment data-book for polymer and biomolecular scientists. Nottingham University Press, Nottingham

    Google Scholar 

  • Thormählen I, Straub J, Grigull U (1985) Refractive index of water and its dependence on wavelength, temperature, and density. J Phys Chem Ref Data 14:933–945

    Article  Google Scholar 

  • Tsujimoto Y (1997) Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ 4:429–434

    Article  PubMed  Google Scholar 

  • Tumolo T, Angnes L, Baptista MS (2004) Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal Biochem 333:273–279

    Article  PubMed  Google Scholar 

  • Unsworth BR, Fleming LH (1980) Aging in rodent brain: alteration in astrocyte population. Neurobiol Aging 1:169–173

    Article  PubMed  Google Scholar 

  • Urbonaite V, De Jongh HHJ, Van Der Linden E, Pouvreau L (2015) Protein aggregates may differ in water entrapment but are comparable in water confinement. J Agric Food Chem 63:8912–8920

    Article  PubMed  Google Scholar 

  • Van Den Berg J, Boersma AJ, Poolman B (2017) Microorganisms maintain crowding homeostasis. Nat Rev Microbiol 15:309–318

    Article  PubMed  Google Scholar 

  • von Zglinicki T, Bimmler M (1987) Intracellular water and ionic shifts during growth and ageing of rats. Mech Ageing Dev 38:179–187

    Article  Google Scholar 

  • von Zglinicki T (1988) Intracellular water distribution and aging as examined by X-ray microanalysis. Scanning Microsc 2:1791–1804

    Google Scholar 

  • Vonck J, Schäfer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta, Mol Cell Res 1793:117–124

    Article  PubMed  Google Scholar 

  • Vorob'ev M (2003) Bound water measurements for aqueous protein solutions and food gels. Colloids Surf B Biointerfaces 31:133–140

    Article  Google Scholar 

  • Walle LV, Lamkanfi M (2016) Pyroptosis. Curr Biol 26:R568–R572

    Article  Google Scholar 

  • Watanabe K, Morishita K, Zhou X, Shiizaki S, Uchiyama Y, Koike M, Naguro I, Ichijo H (2021) Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly (ADP-ribose). Nat Commun 12:1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson JL, Seinkmane E, Styles CT, Mihut K, McNally KE, Derivery E (2023) Macromolecular condensation buffers intracellular water potential. Nature 623(7988):842–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittkopp JM, Khoo TC, Carney S, Pisila K, Bahreini SJ, Tubbesing K, Mahajan S, Sharikova A, Petruccelli JC, Khmaladze A (2020) Comparative phase imaging of live cells by digital holographic microscopy and transport of intensity equation methods. Opt Express 28:6123–6133

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolosewick JJ, Porter KR (1979) Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality J Cell Biol 82:114–139

    Article  PubMed  Google Scholar 

  • Xie Y, Gresham D, Holt LJ (2023) Increased mesoscale diffusivity in response to acute glucose starvation. microPubl biol:10.17912

    Google Scholar 

  • Xu F, Zhang Q, Wang H (2020) Establishing a density-based method to separate proliferating and senescent cells from bone marrow stromal cells. Aging (Albany NY) 12:15050–15057

    Article  PubMed  Google Scholar 

  • Yang, X., Chang, H.Y. and Baltimore, D., 1998. Autoproteolytic activation of pro-caspases by oligomerization. Molecular Cell, 1(2), pp.319-325

    Google Scholar 

  • Yan GE, Elbadawi M, Efferth T (2020) Multiple cell death modalities and their key features. World Acad Sci J 2:39–48

    Google Scholar 

  • You, L., Zhang, Y., Ma, Y., Wang, Y., & Wei, Z. (2025). Effect of boling time on the color, water, protein secondary structure, and volatile compunds of beef. Foods, 14(8), 1372.

    Google Scholar 

  • Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386

    Article  PubMed  Google Scholar 

  • Yurinskaya V, Goryachaya T, Guzhova I, Moshkov A, Rozanov Y, Sakuta G, Shirokova A, Shumilina E, Vassilieva I, Lang F, Vereninov A (2005) Potassium and sodium balance in U937 cells during apoptosis with and without cell shrinkage. Cell Physiol Biochem 16:155–162

    Article  PubMed  Google Scholar 

  • Zelenina M, Brismar H (2000) Osmotic water permeability measurements using confocal laser scanning microscopy. Eur Biophys J 29:165–171

    Article  PubMed  Google Scholar 

  • Zhang X, Garcia IF, Baldi L, Hacker DL, Wurm FM (2010) Hyperosmolarity enhances transient recombinant protein yield in Chinese hamster ovary cells. Biotechnol Lett 32:1587–1592

    Article  PubMed  Google Scholar 

  • Zhang Y, Fernie AR (2021) Metabolons, enzyme–enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. Plant Commun 2:100081

    Article  PubMed  Google Scholar 

  • Zhao J, Zhai B, Gygi SP, Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 112:15790–15797

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Qiu W, Kung J, Zhao X, Peng X, Yegappan M, Yen-Lieberman B, Hsi ED (2008) (2008) Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination therapies. Leuk Res 32(2):275–285

    Article  PubMed  Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Zielbauer BI, Franz J, Viezens B, Vilgis TA (2016) Physical aspects of meat cooking: Time dependent thermal protein denaturation and water loss. Food Biophys 11:34–42

    Article  Google Scholar 

  • Zook E, Pan YE, Wipplinger A, Kerschbaum HH, Clements RJ, Ritter M, Stauber T, Model MA. Delayed vacuolation in mammalian cells caused by hypotonicity and ion loss. Scientific reports. 2024 Nov 26;14(1):29354

    Google Scholar 

  • Zuo C, Li J, Sun J, Fan Y, Zhang J, Lu L, Zhang R, Wang B, Huang L, Chen Q (2020) Transport of intensity equation: a tutorial. Opt Lasers Eng 135:106187

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Mikael Akke (Lund University), Emmanuel Derivery (University of Cambridge), Michael Feig (Michigan State University), Gary Fullerton, Allen Minton (NIH), Arohan Subramanya (University of Pittsburgh), and Priyanka Rana (Case Western University) for advice and discussion. Emily Zook suggested many improvements to the manuscript and has performed the experiments with Proteostat. The work was supported by the Research Council of Kent State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Model .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Model, M.A. (2025). Macromolecular Crowding in Cell Stress and Death. In: Uversky, V.N. (eds) (Macro)Molecular Crowding. Subcellular Biochemistry, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-032-03370-3_14

Download citation

Keywords

Publish with us

Policies and ethics