Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Control of the Heart and of Cardiorespiratory Interactions in Ectothermic Vertebrates

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates
  • 1410 Accesses

  • 13 Citations

Abstract

The functional anatomy of the respiratory and cardiovascular systems and the neuro-anatomy and neuro-physiology of the systems that are implicated in the co-ordination of cardiac output with ventilation are reviewed in fish, including air-breathing fish, amphibians and reptiles. Recent data is reviewed in the light of previous studies on mammals. This account focuses on the roles of the autonomic nervous system in both feed-forward and feedback control of the respiration-related, beat-to-beat changes in heart rate that accompany continuous, rhythmical breathing as well as the marked changes in heart rate associated with bouts of discontinuous breathing. The control of cardiac shunting in species with incompletely separated systemic and pulmonary blood flow is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnisola, C., Randall, D.J. and Taylor, E.W. (2003) The modulatory effects of noradrenaline on vagal control of the heart in the dogfish, Squalus acanthius. Physiol. Biochem. Zool. 76: 310–320

    Article  PubMed  CAS  Google Scholar 

  • Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C. and Cohen, R.J. (1981) Power spectrum analysis of heart-rate fluctuation — a quantitative probe of beat-to-beat cardiovascular control. Science 213: 220–222

    Article  PubMed  CAS  Google Scholar 

  • Al-Ghamdi, M.A.D., Jones, J.F.X. and Taylor, E.W. (2001) Evidence of a functional role in lung inflation for the buccal pump in the agamid lizard, Uromastyx aegyptius microlepis. J. Exp. Biol. 204: 521–531

    PubMed  CAS  Google Scholar 

  • Andersen, H.T. (1961) Physiological adjustments to prolonged diving in the American alligator Alligator mississippiensis. Acta Physiol. Scand. 53: 23–45

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J.B., Hedrick, M.S. and Wang, T. (2003) The cardiovascular responses to hypoxia and anaemia in the toad Bufo marinus. J. Exp. Biol. 206: 857–865

    Article  PubMed  Google Scholar 

  • Anrep, G.V., Pascual, W. and Rossler, R. (1936a) Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc. R. Soc. B 119: 191–217

    Article  Google Scholar 

  • Anrep, G.V., Pascual, W. and Rossler, R. (1936b) Respiratory variations of the heart rate. II. The central mechanism of the respiratory arrhythmia and the interactions between the central and the reflex mechanisms. Proc. R. Soc. B 119: 218–230

    Article  Google Scholar 

  • Augustinsson, A., Fange, R., Johnels, A. and Ostlund, E. (1956) Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J. Physiol. Lond. 13: 257–276

    Google Scholar 

  • Axelsson, M., Abe, A.S., Bicudo, J.E.P.W. and Nilsson, S. (1989) On cardiac control in the South American lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 93A: 561–565

    Article  Google Scholar 

  • Barrett, D.J. and Taylor, E.W. (1985a) Spontaneous efferent activity in branches of the vagus nerve controlling heart rate and ventilation in the dogfish. J. Exp. Biol. 117: 433–448

    CAS  Google Scholar 

  • Barrett, D.J. and Taylor, E.W. (1985b) The location of cardiac vagal preganglionic neurones in the brainstem of the dogfish. J. Exp. Biol. 117: 449–458

    CAS  Google Scholar 

  • Barrett, D.J. and Taylor, E.W. (1985c) The characteristics of cardiac vagal preganglionic motoneurones in the dogfish. J. Exp. Biol. 117: 459–470

    CAS  Google Scholar 

  • Belkin, D.A. (1964) Variations in heart rate during voluntary diving in the turtle Pseudemys concinna. Copeia 1964: 321–330

    Article  Google Scholar 

  • Bootsma, M., Swenne, C.A., Vanbolhuis, H.H., Chang, P.C., Cats, V.M. and Bruschke, A.V.G. (1994) Heart-rate and heart-rate variability as indexes of sympathovagal balance. Am. J. Physiol. 266: H1565–H1571

    PubMed  CAS  Google Scholar 

  • Brainerd, E.L. and Owerkowicz, T. (1996) Role of the gular pump in lung ventilation during recovery from exercise in varanid lizards. Am. Zool. 36: 88A

    Google Scholar 

  • Brown, G.L. and Eccles, J.C. (1934) The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. 82: 211–241

    PubMed  CAS  Google Scholar 

  • Burggren, W. (1975) A quantitative analysis of ventilation tachycardia and its control in two chelonians, Chrysemys scripta and Testudo graeca. J. Exp. Biol. 63: 367–380

    PubMed  CAS  Google Scholar 

  • Burggren, W.W. and Johansen, K. (1986) Circulation and respiration in lungfishes (Dipnoi). J. Morph. Suppl. 1: 217–236

    Article  Google Scholar 

  • Butler, P.J. and Taylor, E.W. (1971) Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induced hypoxia. Comp. Biochem. Physiol. 39A: 307–323

    Article  Google Scholar 

  • Campbell, H.A. and Egginton, S. (2007) The vagus nerve mediates cardiorespiratory coupling that changes with metabolic demand in a temperate nototheniod fish. J. Exp. Biol. 210: 2472–2480

    Article  PubMed  Google Scholar 

  • Campbell, H.A., Taylor, E.W. and Egginton, S. (2004) The use of power spectral analysis to determine cardiorespiratory control in the short-horned sculpin Myoxocephalus scorpius. J. Exp. Biol. 207: 1969–1976

    Article  PubMed  CAS  Google Scholar 

  • Campbell, H.A., Leite, C.A.C., Wang, T., Skals, M., Abe, A.S., Egginton, S., Rantin, F.T., Bishop, C.M. and Taylor, E.W. (2006) Evidence for a respiratory component, similar to mammalian respiratory sinus arrhythmia, in the heart rate variability signal from the rattlesnake, Crotalus durissus terrificus. J. Exp. Biol. 209: 2628–2636

    Article  PubMed  Google Scholar 

  • Cruce, W.L.R. and Niewenhuys, R. (1974) The cell masses in the brain stem of the turtle (Testudo hermanni): a topographical and topological analysis. J. Comp. Neurol. 156: 277–306

    Article  PubMed  CAS  Google Scholar 

  • Daly, M., de, B. and Scott, M.J. (1962) An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J. Physiol. Lond. 162: 555–573

    Google Scholar 

  • de Saint-Aubain, M.L. and Wingstrand, K.G. (1979) A sphincter in the pulmonary artery of the frog Rana temporaria and its influence on blood flow in skin and lungs. Acta Zool. 60: 163–172

    Article  Google Scholar 

  • Delaney, R.G., Laurent, P., Galante, R., Pack, A.I., Fishman, A.P. (1983) Pulmonary mechanoreceptors in the dipnoi lungfish Protopterus and Lepidosiren. Am. J. Physiol. 13: R418–R428

    Google Scholar 

  • Douse, M.A. and Mitchell, G.S (1990) Episodic respiratory-related discharge in turtle cranial motorneurons: in vivo and in vitro studies. Brain Res. 536: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Douse, M.A. and Mitchell, G.S (1991) Time courses of temperature effects on arterial acid-base status in Alligator mississippiensis. Respir Physiol 83: 87–102

    Article  PubMed  CAS  Google Scholar 

  • Farmer, C.G. and Carrier, D.R. (2000) Pelvic aspiration in the American alligator (Alligator mississippiensis). J. Exp. Biol. 203: 1679–1687

    PubMed  CAS  Google Scholar 

  • Farrell, A.P. (1978) Cardiovascular events associated with airbreathing in two teleosts, Hoplerythrinus unitaeniatus and Arapaima gigas. Can. J. Zool. 56: 953–958

    Article  Google Scholar 

  • Feder, M.E. and Burggren, W.W. (1985) Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol. Rev. 60: 1–45

    Article  PubMed  CAS  Google Scholar 

  • Fishman, A.P., Delaney, R.G. and Laurent, P. (1985) Circulatory adaptation to bimodal respiration in the dipnoan lungfish. J. Appl. Physiol. 59: 285–294

    PubMed  CAS  Google Scholar 

  • Fritsche, R., Axelsson, M., Franklin, C.E., Grigg, G.G., Holmgren, S. and Nilsson, S. (1993) Respiratory and cardiovascular responses to hypoxia in the Australian lungfish. Respir. Physiol. 94: 173–187

    Article  PubMed  CAS  Google Scholar 

  • Galli, G.L.J., Skovgaard, N., Abe, A.S., Taylor, E.W. and Wang, T. (2007) The adrenergic regulation of the cardiovascular system in the South American rattlesnake Crotalus durissus. Comp. Biochem. Physiol. 148: 510–520

    Article  CAS  Google Scholar 

  • Gamperl, A.K., Milsom, W.K., Farrell, A.P. and Wang, T. (1999) Cardiorespiratory responses of the toad (Bufo marinus) to hypoxia at two different temperatures. J. Exp. Biol. 202: 3647–3658

    PubMed  CAS  Google Scholar 

  • Gannon, B.J. and Burnstock, G. (1969) Excitatory adrenergic innervation of the fish heart. Comp. Biochem. Physiol. 29: 765–773

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, J. and DeVera L.D. (1988) Spectral analysis of heart-rate variability of lizard, Gallotia galloti. Am. J. Physiol. 254: R242–R248

    Google Scholar 

  • Graham, J.B. (1997) Air-Breathing Fishes: Evolution, Diversity, and Adaptation. Academic Press, San Diego

    Google Scholar 

  • Graham, J.B., Chiller, L.D. and Roberts, J.L. (1995) The transition to air breathing in fishes. V. Comparative aspects of cardiorespiratory regulation in Synbranchus marmoratus and Monopterus albus (Synbranchidae). J. Exp. Biol. 198: 1455–1467

    PubMed  Google Scholar 

  • Grossman, P. and Taylor, E.W. (2006) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74: 263–285

    Article  PubMed  Google Scholar 

  • Hayano, J. and Yasuma, F. (2003) Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc. Res. 58: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Heatwole, H. (1977) Heart rate during breathing and apnea in marine snakes (Reptilia, Serpentes). J. Herp. 11: 67–76

    Article  Google Scholar 

  • Herman, J., Wang, T., Smits, A.W. and Hicks, J.W. (1997) The effects of artificial lung inflation on pulmonary blood flow and heart rate in the turtle. J. Exp. Biol. 200: 2539–2549

    PubMed  CAS  Google Scholar 

  • Hicks, J.W. and Wang, T. (1996) Functional role of cardiac shunts in reptiles. J. Exp. Zool. 275: 204–216

    Article  Google Scholar 

  • Hughes, G.M. and Shelton, G. (1962) Respiratory mechanisms and their nervous control in fish. Adv. Comp. Physiol. Biochem. 1: 275–364

    PubMed  CAS  Google Scholar 

  • Huggins, S.E., Hoff, H.E. and Peña, R.V. (1970) The respiratory heart-rate response in crocodilian reptiles. Physiol. Zool. 43: 10–18

    Google Scholar 

  • Jacob, J.S. (1980) Heart rate-ventilatory response of seven terrestrial species of North American snakes. Herpetologica 36(4): 326–335

    Google Scholar 

  • Jacob, J.S. and McDonald, H.S. (1976) Diving bradycardia in four species of North American aquatic snakes. Comp. Biochem. Physiol. 53A: 69–72

    Article  Google Scholar 

  • Jensen, D. (1965) The aneural heart of the hagfish. Ann. N.Y. Acad. Sci. 127: 443–458

    Article  PubMed  CAS  Google Scholar 

  • Jewett, D.L. (1964) Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio-inhibitory fibres. J. Physiol. 175: 321–357

    PubMed  CAS  Google Scholar 

  • Johansen, K. (1959) Heart activity during experimental diving of snakes. Am. J. Physiol. 197: 604–606

    PubMed  CAS  Google Scholar 

  • Johansen, K. and Hanson, D. (1968) Functional anatomy of the hearts of lungfishes and amphibians. Am. Zool. 8: 191–210

    PubMed  CAS  Google Scholar 

  • Johansen, K. and Reite, O.B. (1968) Influence of acetylcholine and biogenic amines on branchial, pulmonary and systemic vascular resistance in the African lungfish, Protopterus aethiopicus. Acta Physiol. Scand. 74: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Johansen, K., Lenfant, C. and Hanson, D. (1968a) Cardiovascular dynamics in the lungfishes. Z. Vergl. Physiol. 59: 157–186

    Google Scholar 

  • Johansen, K., Lenfant, C., Schmidt-Nielsen, K. and Petersen, J. (1968b) Gas exchange and control of breathing in the electric eel, Electrophorus electricus. Z. Vergl. Physiol. 61: 137–163

    Article  Google Scholar 

  • Jones, D.R., Langille, B.L., Randall, D.J., and Shelton, G. (1974) Blood flow in dorsal and ventral aortas of the cod, Gadus morhua. Am. J. Physiol. 226: 90–95

    PubMed  CAS  Google Scholar 

  • Jones, J.F.X., Young, M., Jordan, D. and Taylor, E.W. (1993) Effect of capsaicin on heart rate and fictive ventilation in the decerebrate dogfish (Scyliorhinus canicula). J. Physiol. Lond. 473: 236P

    Google Scholar 

  • Johansen, K., Burggren, W.W., and Glass, M.L. (1977) Pulmonary stretch receptors regulate heart rate and pulmonary blood flow in the turtle, Pseudemys scripta. Comp. Biochem. Physiol. 58A: 185–191

    Article  Google Scholar 

  • Jordan, D., Spyer, K.M. (1987) Central mechanisms mediating respiratory-cardiovascular interactions. In: Taylor EW (ed) Neurobiology of the Cardiorespiratory System. Manchester University Press, Manchester, pp 322–341

    Google Scholar 

  • Katona, P.G., Poitras, J.W., Barnett, G.O. and Terry, B.S. (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am. J. Physiol. 218: 1030–1037

    PubMed  CAS  Google Scholar 

  • Kunze, D.L. (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J. Physiol. 222: 1–15

    PubMed  CAS  Google Scholar 

  • Landberg, T., Mailhot, J.D., and Brainerd, E.L. (2003) Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J. Exp. Biol. 206: 3391–3404

    Article  PubMed  Google Scholar 

  • Levy, M.N., Martin, P.J., Lano, T. and Zieske, H. (1969) Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ. Res. 25: 303–314

    PubMed  CAS  Google Scholar 

  • Levy, M.N., Iano, T. and Zieske, H. (1972) Effects of repetitive bursts of vagal activity on heart rate. Circ. Res. 30: 186–195

    PubMed  CAS  Google Scholar 

  • Levy, M.N., Martin, P.J. and Stuesse, S.L. (1981) Neural regulation of the heart beat. Ann. Rev. Physiol. 43: 443–453

    Article  CAS  Google Scholar 

  • Lillywhite, H.B. and Donald, J.A. (1989) Pulmonary blood flow regulation in an aquatic snake. Science 245: 293–295

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.J. (1977) Paradoxical dynamic interactions of heart period and vagal activity on atrioventricular conduction in the dog. Circ. Res. 40: 81–89

    PubMed  CAS  Google Scholar 

  • McKenzie, D.J., Campbell, H.A., Taylor, E.W., Micheli, M., Rantin, F.T. and Abe, A.S. (2007) The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus. J. Exp. Biol. 210: 4224–4232

    Article  PubMed  CAS  Google Scholar 

  • Milsom, W.K. (1990) Mechanoreceptor modulation of endogenous respiratory rhythms in vertebrates. Am. J. Physiol. 259: R898–R910

    PubMed  CAS  Google Scholar 

  • Morris, JL, Nilsson, S (1994) The circulatory system. In: Nilsson S, Holmgren S (eds) Comparative Physiology and Evolution of the Autonomic Nervous System. Harwood Academic Publishers, Chur Switzerland, pp 193–246

    Google Scholar 

  • Overgaard, J., Stecyk, J., Farrell, A.P. and Wang, T. (2002) Adrenergic control of the cardiovascular system in the turtle Trachemys scripta. J. Exp. Biol. 205: 3335–3345

    PubMed  CAS  Google Scholar 

  • Owerkowicz, T. (1999) Contribution of gular pumping to lung ventilation in monitor lizards. Science 284: 1661–1663

    Article  PubMed  CAS  Google Scholar 

  • Pace, D.G., Masuda, Y., Eisenstein, I. and Levy, M.N. (1984) Effects of digoxin on the chronotropic responses to repetitive vagal stimulus bursts in the dog. Canad. J. Physiol. Pharmacol. 62: 1411–1415

    Article  CAS  Google Scholar 

  • Piiper J, Scheid P (1977) Comparative physiology of respiration: functional analysis of gas exchange organs in vertebrates. In: Widdicombe JG (ed) International Review of Physiology, Respiratory Physiology, II, vol. 14. Baltimore: University Park Press, Baltimore, pp 219–253

    Google Scholar 

  • Pokrovskii, M.V. (1984) Control of cardiac rhythm by stimulation of the vagus nerve in bursts in the rat. Byulleten Éksparimental noi Biologii i Meditsiny 97: 389–390

    CAS  Google Scholar 

  • Pokrovskii, M.V. (2003) Alternative view on the mechanism of cardiac rhythmogenesis. Heart Lung Circulation 12: 18–24

    Article  Google Scholar 

  • Porges, S.W. (1995) Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychology 32: 301–318

    CAS  Google Scholar 

  • Pough, F.H. (1969) Physiological aspects of the burrowing of sand lizards (Uma iguanidae) and other lizards. Comp. Biochem. Physiol. 31, 869–884

    Article  CAS  Google Scholar 

  • Preston, E. and Courtice, G.P. (1995) Physiological correlates of vagal nerve innervation in lower vertebrates. Am. J. Physiol. 37: R1249–R1256

    Google Scholar 

  • Randall D.J. (1966) The nervous control of cardiac activity in the tench (Tinca tinca) and the goldfish (Carassius auratus). Physiol. Zool. 39:185–192

    Google Scholar 

  • Randall, D.J. and Smith, J.C. (1967) The regulation of cardiac activity in fish in a hypoxia environment. Physiol. Zool. 40:104–113

    Google Scholar 

  • Randall, D.J. and Taylor, E.W. (1991) Evidence of a role for catecholamines in the control of breathing in fish. Rev. Fish Biol. Fisheries 1:139–158

    Article  Google Scholar 

  • Sanchez, A., Soncini, R., Wang, T., Koldkjær, P., Taylor, E.W. and Glass, M.L. (2001) The differential cardiorespiratory responses to ambient hypoxia and systemic hypoxaemia in the South American lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 130: 677–687

    Article  CAS  Google Scholar 

  • Satchell, G.H. (1960) The reflex co-ordination of the heart beat with respiration in dogfish. J. Exp. Biol. 37: 719–731

    Google Scholar 

  • Segura, E.T., Bronstein, A. and Schmajuk, N.A. (1981) Effect of breathing upon blood pressure and heart rate in the toad, Bufo arenarum Hensel. J. Comp. Physiol. 143: 223–227

    Google Scholar 

  • Shelton G (1970) The effect of lung ventilation on blood flow to the lungs and body of the amphibian, Xenopus laevis. Respir. Physiol. 9: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Singh, B.N. and Hughes, G.M. (1973) Cardiac and respiratory responses in the climbing perch Anabas testudineus. J. Comp. Physiol. 84: 205–226

    Article  Google Scholar 

  • Skals, M., Skovgaard, N., Taylor, E.W., Leite, C.A.C., Abe, A.S. and Wang, T. (2006) Cardiovascular changes under normoxic and hypoxic conditions in the air-breathing teleost Synbranchus marmoratus: importance of the venous system. J. Exp. Biol. 209: 4167–4173

    Article  PubMed  Google Scholar 

  • Skovgaard, N. and Wang, T. (2006) Local control of pulmonary blood flow and lung structure in reptiles: Implications for ventilation perfusion matching. Resp. Physiol. Neurobiol. 154: 107–117

    Article  Google Scholar 

  • Sundin, L., Burleson, M., Wang, T., Reid, S., Salgado, H., Abe, A., Glass, M. and Milsom, W. (2001) Pulmonary receptors in reptiles: Discharge patterns of receptor populations in snakes versus turtles. J. Comp. Physiol. B 171: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Taylor EW (1992) Nervous control of the heart and cardiorespiratory interactions. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish Physiology, vol. 12B. Academic Press, New York, pp 343–387

    Google Scholar 

  • Taylor, E.W. (1993) The neuranatomy of central cardiorespiratory control in vertebrates. Functionsanalyse Biologischer Systeme 23: 149–158

    Google Scholar 

  • Taylor, E.W. and Butler, P.J. (1982) Nervous control of heart rate: activity in the cardiac vagus of the dogfish. J. Appl. Physiol. 53(6): 1330–1335

    PubMed  CAS  Google Scholar 

  • Taylor, E.W. and Ihmied, Y.M. (1995) Vagal and adrenergic tone on the heart of Xenopus laevis at different temperatures. J. Therm. Biol. 20: 55–59

    Article  Google Scholar 

  • Taylor, E.W., Short, S. and Butler, P.J. (1977) The role of the cardiac vagus in the response of the dogfish, Scyliorhinus canicula to hypoxia. J. Exp. Biol. 70: 57–75

    Google Scholar 

  • Taylor EW, McKenzie DJ, Levings JJ, Randall DJ (1996) Control of ventilation in air-breathing fish. In: Val AL, Almeida-Val VMF, Randall DJ (eds) Physiology and Biochemistry of the Fishes of the Amazon. INPA, Alameda Cosme Ferreira, pp 155–167

    Google Scholar 

  • Taylor, E.W., Jordan, D., Coote, J.H. (1999) Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol. Rev. 79: 855–916

    PubMed  CAS  Google Scholar 

  • Taylor, E.W., Al-Ghamdi, M.A.D., Ihmied, Y.I., Wang, T. and Abe, A.S. (2001) The neuranatomical basis of central control of cardiorespiratory interactions in vertebrates. Exp. Phys. 86: 781–786

    Google Scholar 

  • Taylor, E.W., Campbell, H.A., Levings, J.J., Young, M.J., Butler, P.J., Egginton, S. (2006) Coupling of the respiratory rhythm in fish with activity in hypobranchial nerves and with heart beat. Physiol. Biochem. Zool. 79: 1000–1009

    Article  PubMed  Google Scholar 

  • Taylor, E.W., Andrade, D.V., Abe, A.S. and Wang, T. (2009a) The unequal influences of the left and right vagi on the control of the heart and pulmonary artery in the rattlesnake, Crotalus durissus. J. Exp. Biol. (in press)

    Google Scholar 

  • Taylor, E.W., Leite, C. and Levings, J.J. (2009b) Central control of cardiorespiratory interactions in fish. Acta Histochemica (in press)

    Google Scholar 

  • Taylor, E.W., Leite, C.A.C., Guerra, C.D.R., Florindo, L.H., Belao, T. and Rantin, F.T. (2009c) Vagal control of the heart and of cardiorespiratory interactions in the Neotropical fish, the pacu, Piaractus mesopotamicus: a neuranatomical and neurophysiological study. J. Exp. Biol. (in revision)

    Google Scholar 

  • Wang, T. and Hicks, J.W. (1996a) Cardiorespiratory synchrony in turtles. J. Exp. Biol. 199: 1791–1800

    CAS  Google Scholar 

  • Wang, T. and Hicks, J.W. (1996b) The interaction of pulmonary ventilation and the right-left shunt on arterial oxygen levels. J. Exp. Biol. 199: 2121–2129

    CAS  Google Scholar 

  • Wang, T. and Hicks, J.W. (2009) Changes in pulmonary blood flow do not affect gas exchange during intermittent ventilation in resting turtles. J. Exp. Biol. (in press)

    Google Scholar 

  • Wang, T. E. Krosniunas and Hicks, J.W. (1997) The role of cardiac shunts in the regulation of arterial blood gases. Am. Zool. 37: 12–22

    Google Scholar 

  • Wang, T., Hedrick, M.S., Ihmied, Y.M., and Taylor, E.W. (1999) Control and interaction of the cardiovascular and respiratory systems in anuran amphibians. Comp. Biochem. Physiol. 124: 395–408

    Google Scholar 

  • Wang, T., Taylor, E.W., Andrade, D. and Abe, A.S. (2001a) Autonomic control of heart rate during forced activity and digestion in the snake Boa constrictor. J. Exp. Biol. 204: 3553–3560

    CAS  Google Scholar 

  • Wang, T., Warburton, S., Abe, A.S. and Taylor, E.W. (2001b) Vagal control of heart rate and cardiac shunts in reptiles: relation to metabolic state. Exp. Phys. 86: 777–784

    Article  CAS  Google Scholar 

  • Wang, T., Taylor, E.W., Reid, S.G. and Milsom, W.K. (2004) Interactive effects of mechano- and chemo-receptor inputs on cardiorespiratory outputs in the toad. Respir. Physiol. Neurobiol. 140: 63–76

    Article  PubMed  CAS  Google Scholar 

  • West, N.H. and Burggren, W.W. (1984) Factors influencing pulmonary and cutaneous arterial blood flow in the toad, Bufo marinus. Am. J. Physiol. 247: R884–R894

    PubMed  CAS  Google Scholar 

  • West, NH, Van Vliet, BN (1992) Sensory mechanisms regulating cardiovascular and respiratory systems. In: Feder ME, Burggren WW (eds) Environmental Physiology of the Amphibians. University of Chicago Press, Chicago, pp 151–182

    Google Scholar 

  • Withington-Wray, DJ, Taylor, EW, Metcalfe, JD (1987) The location and distribution of vagal preganglionic neurones in the hindbrain of lower vertebrates, Chap. 16. In: Taylor EW (ed) Neurobiology of the Cardiorespiratory System. Manchester University Press, Manchester, pp 304–321

    Google Scholar 

  • Wood, S.C. (1984) Cardiovascular shunts and oxygen transport in lower vertebrates. Am. J. Physiol. 247: R3–R14

    PubMed  CAS  Google Scholar 

  • Xiang, H., Taylor, E.W., Whiteley, N.M. and Randall, D.J. (1994) Modulation of noradrenergic action by neuropeptide Y in dogfish. Physiol. Zool. 67: 204–215

    CAS  Google Scholar 

  • Young, JZ (1950) The Life of Vertebrates. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

TW is funded through the Danish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, E.W., Wang, T. (2009). Control of the Heart and of Cardiorespiratory Interactions in Ectothermic Vertebrates. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_13

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics