Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Random Walk Models of Movement and Their Implications

  • Chapter
Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 17))

  • 832 Accesses

  • 19 Citations

Abstract

Biologists long have sought quantitative models to describe the process of dispersal: to aid understanding, to guide experimentation, and to facilitate prediction. The most common such models are of the random walk type, deriving from the assumption that individuals move in a series of discrete steps with probabilities totally determined by positional information. Learning is ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aronson, D.G., Weinberger, H.F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve propagation, pp. 5–49, In: J. Goldstein (ed.), Partial Differential Equations and Related Topics. Lecture Notes in Mathematics 445. Springer-Verlag, Heidelberg

    Chapter  Google Scholar 

  • Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. #285

    Google Scholar 

  • Fife, P.C. (1984). Current topics in reaction-diffusion systems. In: M. G. Velarde (ed.), Proceedings of NATO Conference on Nonequilibrium Phenomena in Physics and Related Fields. Plenum

    Google Scholar 

  • Fisher, R.A. (1937). The wave of advance of advantageous genes. Ann. Eugen. London 7: 355–369

    Google Scholar 

  • Hadeler, K.P. (1976). Nonlinear diffusion equations in biology. In: W. N. Everett and B. D. Sleeman (eds.), Ordinary and Partial Differential Equations. Lect. Notes in Mathematics 564, Springer-Verlag, Heidelberg

    Google Scholar 

  • Hadeler, K.P. (1984). Spread and age structure in epidemic models in Perspectives in Mathematics. Anniversary of Oberwolfach, 1984. pp. 295–320. Birkhauser-Verlag, Basel

    Google Scholar 

  • Hadeler, K.P., Rothe, E. (1975). Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2: 251–263

    Google Scholar 

  • Hoppensteadt, F. (1975). Mathematical Theories of Populations: Demographics, Genetics and Epidemics. SI AM Reg. Conf. Series 20, Philadelphia

    Google Scholar 

  • Kareiva, P. (1983). Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57: 322–327

    Article  Google Scholar 

  • Kendall, D.G. (1965). Mathematical models of the spread of infection. Mathematics and Computer Science in Biology and Medicine, London H.M.S.O. pp. 213–225

    Google Scholar 

  • Kolmogorov, A., Petrovskij, I., Piskunov, N. (1937). Etude de l’equation de la diffusion avec croissance de la quantite de la matiere et son application a un probleme biologique. Bull. Univ. Moscou Ser. Internation., Sec. A, 1 (6) 1–25

    Google Scholar 

  • Lin, C.C., Segel, L.A. (1974). Mathematics Applied to Deterministic Problems in The Natural Sciences. MacMillan, New York. 604+xix pages

    Google Scholar 

  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Biomathematics 10, Springer-Verlag, New York

    Google Scholar 

  • Skellam, J.G. (1951). Random dispersal in theoretical populations. Biometrika 38: 196–218

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levin, S.A. (1986). Random Walk Models of Movement and Their Implications. In: Hallam, T.G., Levin, S.A. (eds) Mathematical Ecology. Biomathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69888-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69888-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69890-3

  • Online ISBN: 978-3-642-69888-0

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics