Abstract
Biologists long have sought quantitative models to describe the process of dispersal: to aid understanding, to guide experimentation, and to facilitate prediction. The most common such models are of the random walk type, deriving from the assumption that individuals move in a series of discrete steps with probabilities totally determined by positional information. Learning is ignored.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aronson, D.G., Weinberger, H.F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve propagation, pp. 5–49, In: J. Goldstein (ed.), Partial Differential Equations and Related Topics. Lecture Notes in Mathematics 445. Springer-Verlag, Heidelberg
Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. #285
Fife, P.C. (1984). Current topics in reaction-diffusion systems. In: M. G. Velarde (ed.), Proceedings of NATO Conference on Nonequilibrium Phenomena in Physics and Related Fields. Plenum
Fisher, R.A. (1937). The wave of advance of advantageous genes. Ann. Eugen. London 7: 355–369
Hadeler, K.P. (1976). Nonlinear diffusion equations in biology. In: W. N. Everett and B. D. Sleeman (eds.), Ordinary and Partial Differential Equations. Lect. Notes in Mathematics 564, Springer-Verlag, Heidelberg
Hadeler, K.P. (1984). Spread and age structure in epidemic models in Perspectives in Mathematics. Anniversary of Oberwolfach, 1984. pp. 295–320. Birkhauser-Verlag, Basel
Hadeler, K.P., Rothe, E. (1975). Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2: 251–263
Hoppensteadt, F. (1975). Mathematical Theories of Populations: Demographics, Genetics and Epidemics. SI AM Reg. Conf. Series 20, Philadelphia
Kareiva, P. (1983). Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57: 322–327
Kendall, D.G. (1965). Mathematical models of the spread of infection. Mathematics and Computer Science in Biology and Medicine, London H.M.S.O. pp. 213–225
Kolmogorov, A., Petrovskij, I., Piskunov, N. (1937). Etude de l’equation de la diffusion avec croissance de la quantite de la matiere et son application a un probleme biologique. Bull. Univ. Moscou Ser. Internation., Sec. A, 1 (6) 1–25
Lin, C.C., Segel, L.A. (1974). Mathematics Applied to Deterministic Problems in The Natural Sciences. MacMillan, New York. 604+xix pages
Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Biomathematics 10, Springer-Verlag, New York
Skellam, J.G. (1951). Random dispersal in theoretical populations. Biometrika 38: 196–218
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Levin, S.A. (1986). Random Walk Models of Movement and Their Implications. In: Hallam, T.G., Levin, S.A. (eds) Mathematical Ecology. Biomathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69888-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-69888-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-69890-3
Online ISBN: 978-3-642-69888-0
eBook Packages: Springer Book Archive
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.