Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Mathematical Models of Plant Morphogenesis

  • Chapter
Axioms and Principles of Plant Construction
  • 97 Accesses

  • 1 Citation

Abstract

Analyses are presented of the structure and the development of several biological entities, ranging in level of organization from the molecular to the organismal. Classical methods of analysis which have been used in the physical sciences have proved appropriate, showing the applicability of physical principles to biological structure and morphogenesis. At the ultrastructural level, bacterial flagella, microtubules and similar objects exhibit regularities of packing of their constituent protein subunits, which can be analyzed in crystallographic terms. The growth of a plant cell wall is shown to depend on the physical properties of the wall itself, and its susceptibility to strain hardening and metabolic softening. In multicellular tissues and organs, the growth deformations which lead to mature structures can be described and analyzed appropriately using concepts and principles drawn from fluid dynamics. In some cases growth is steady, that is the growth pattern is invariant with time over some period. A structure such as a meristem, may maintain its form, while the elements or cells of which it consists are continually changing. It is suggested that plants exploit the physical properties of their constituent materials, and physical forces such as turgor stress, in their morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berg, H. C. 1975. How bacteria swim. Sci. Am. Aug. pp. 36–44.

    Google Scholar 

  • Bradley, D. E. 1963. The structure of coliphages. J. Gen. Microbiol. 31: 435–445.

    Google Scholar 

  • Chen, M.-H. 1965. Studies on the development of young gametophytes of Onoclea sensibilis. M. S. thesis, Univ. of Pennsylvania.

    Google Scholar 

  • Erickson, H. P. 1974. Microtubule surface lattice and subunit structure and observations on reassembly. J. Cell Biol. 60: 153–167.

    Google Scholar 

  • Erickson, R. O. 1966. Relative elemental rates and anisotropy of growth in area: a computer programme. J. Exp. Bot. 17: 390–403.

    Google Scholar 

  • Erickson, R. O. 1973. Tubular packing of spheres in biological fine structure. Science 181: 705–716.

    Google Scholar 

  • Erickson, R. O. 1976. Growth in two dimensions, descriptive and theoretical studies. In.“Automata, Languages, Development,” A. Lindenmayer amp; G. Rozenberg (eds.). North-Holland Publ. Co.

    Google Scholar 

  • Erickson, R. O. 1980. Microfibrillar structure of growing plant cell walls. Lect. Notes Biomath. 33: 192–212.

    Google Scholar 

  • Erickson, R. O., amp; D. R. Goddard. 1951. An analysis of root growth in cellular and biochemical terms. Growth, Symp. 10: 89–116.

    Google Scholar 

  • Erickson, R. O., amp; K. B. Sax. 1956. Elemental growth rate of the primary root of Zea mays; Rates of cell division and cell elongation in the growth of the primary root of Zea mays. Proc. Amer. Phil. Soc. 100: 487–498; 499–514.

    Google Scholar 

  • Fujiwara, K. 1974. Studies on the microtubule protein, tubulin… Ph. D. diss., Univ. of Pennsylvania.

    Google Scholar 

  • Gertel, E. T., amp; P. B. Green. 1977. Cell growth pattern and wall microfibrillar arrangement. Plant Physiol. 60: 247–254.

    Google Scholar 

  • Goodwin, R. H., amp; C. Avers. 1956. Studies on roots. III. An analysis of root growth in Phleum pratense using photomicrographic methods. Amer. J. Bot. 43: 479–487.

    Google Scholar 

  • Green, P. B. 1954. The spiral growth pattern of the cell wall in Nitella axillaris. Amer. J. Bot. 41: 403–409.

    Article  Google Scholar 

  • Green, P. B. 1958. Structural characteristics of developing Nitella intermodal cell walls. J. Biophys. Biochem. Cytol. 4: 505–516.

    Article  Google Scholar 

  • Green, P. B. 1960. Multinet growth in the cell wall of Nitella. J. Biophys. Biochem. Cytol. 7: 289–296.

    Article  Google Scholar 

  • Green, P. B. 1968. Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure. Plant Physiol. 43: 1169–1184.

    Article  Google Scholar 

  • Green, P. B., amp; K. Bauer. 1977. Analysing the changing cell cycle. J. Theor. Biol. 68: 299–315.

    Google Scholar 

  • Green, P. B., R. O. Erickson amp; J. Buggy. 1971. Metabolic and physical control of cell elongation rate. Plant Physiol. 47: 423–430.

    Article  Google Scholar 

  • Green, P. B., R. O. Erickson amp; P. A. Richmond. 1970. On the physical basis of morphogenesis. Ann. N. Y. Acad. Sci. 175: 712–731.

    Article  Google Scholar 

  • Harris, W. F. 1973. Bacterial flagellar Do they rotate or do they propagate waves of bending? Protoplasma 77: 477–479.

    Article  Google Scholar 

  • Harris, W. F., amp; R. O. Erickson. 1980. Tubular arrays of spheres: geometry, continuous and discontinuous contraction, and the role of moving dislocations in contraction. J. Theor. Biol. 27: 233–257.

    Google Scholar 

  • Harris, W. F., amp; L. E. Scriven. 1970. Cylindrical crystals, contractile mechanisms of bacteriophages and the possible role of dislocations in contraction. J. Theor. Biol. 27: 233–257.

    Google Scholar 

  • Kay, D. 1963. Viruses, Nucleic Acids and Cancer. Williams Amp; Wilkins, Baltimore.

    Google Scholar 

  • Kellenberger, E, amp; E. Boy de la Tour. 1964. On the fine structure of normal and “polymerized” tail sheath of phage T4. J. Ultrastruct. Res. 11: 545–563.

    Google Scholar 

  • Mardia, K. V. 1972. Statistics of directional data. Academic Press, New York.

    Google Scholar 

  • O’Brien, E. J., amp; P. M. Bennett. 1972. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70: 133–152.

    Article  Google Scholar 

  • Richards, O. W., amp; A. J. Kavanagh. 1943. The analysis of the relative growth gradients and changing form of growing organisms: illustrated by the tobacco leaf. Amer. Nat. 77: 385–399.

    Google Scholar 

  • Roelofsen, P. A., amp; A. L. Houwink. 1953. Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces sporangiophore. Acta Bot. Neerl. 2: 218–225.

    Google Scholar 

  • Silk, W. K., amp; R. O. Erickson. 1978. Kinematics of hypocotyl curvature. Amer. J. Bot. 65: 310–319.

    Google Scholar 

  • Silk, W. K., amp; R. O. Erickson. 1979. Kinematics of plant growth. J. Theor. Biol. 76: 481–501.

    Google Scholar 

  • Silk, W. K., amp; R. O. Erickson. 1980a. Local biosynthetic rates of cytoplasmic constituents in growing tissue. J. Theor. Biol. 83: 701–703.

    Google Scholar 

  • Silk, W. K., amp; R. O. Erickson. 1980b. The kinematics of plant growth. Sci. Am. 242 (5): 134–151.

    Google Scholar 

  • Thompson, D. W. 1943. On Growth and Form. Cambridge Univ. Press.

    Google Scholar 

  • Tilney, L. G., J. Bryan, D. J. Bush, K. Fujiwara, M. S. Mooseker, D. B. Murphy amp; D. H. Snyder. 1973. Microtubules: evidence for 13 protof ilaiiients. J. Cell Biol. 59: 267–275.

    Article  Google Scholar 

  • Tilney, L. G., amp; K. R. Porter. 1967. Studies on the microtubules in Heliozoa. II. J. Cell Biol. 34: 327–343.

    Google Scholar 

  • Van Iterson, G. 1907. Mathematische und mikroskopisch-anatomische Studien iiber Blattstellungen nebst Betrachtungen iiber den Schalenbau der Miliolinen. Gustav Fischer, Jena.

    Google Scholar 

  • Woodger, J. H. 193 7. The Axiomatic Method in Biology. Cambridge Univ. Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff / Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Erickson, R.O. (1982). Mathematical Models of Plant Morphogenesis. In: Sattler, R. (eds) Axioms and Principles of Plant Construction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7636-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7636-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7638-2

  • Online ISBN: 978-94-009-7636-8

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics