Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Chemical Synthesis of Biobased Materials

  • Chapter
  • First Online:
Research and Applications of Bio-based Degradable Materials
  • 43 Accesses

Abstract

With the rapid growth of the world population, the global demand for energy and new materials has sharply increased. Most of today’s chemicals and polymers still come from fossil resources; about 8% of petroleum is used to manufacture polymers. However, the production and use of petroleum-based materials often accompany the generation of a large amount of pollutants, and their waste is also increasing. Moreover, most polymers are discarded after use, and the long-term non-degradability of these products poses a great threat to the earth’s ecological environment, making the environment on which humans depend for survival increasingly deteriorate. According to statistics, tens of millions of tons of plastic waste will be emitted globally every year. People are increasingly concerned about the adverse environmental and socioeconomic consequences of petrochemicals, and the lifespan of fossil resources is also an important factor that people have to consider. Therefore, it is of extraordinary significance to use natural biomass polymers as research objects, explore their different synthesis techniques, and study the innovative development of corresponding raw materials. In this chapter, we will focus on the introduction of biobased materials and their chemical synthesis methods, as well as the main degradable biobased materials’ chemical synthesis routes, and summarize some practical problems in these materials’ synthesis and the latest synthesis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe H, Takahashi N, Kim KJ et al (2004) Thermal degradation processes of end-capped poly (L-lactide)s in the presence and absence of residual zinc catalyst. Biomacromolecules 5(4):1606–1614

    Article  CAS  PubMed  Google Scholar 

  • Ajioka M, Enomoto K, Suzuki K et al (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131

    Article  CAS  Google Scholar 

  • Ajioka M, Suizu H, Higuchi C et al (1998) Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization. Polym Degrad Stab 59(1):137–143

    Article  CAS  Google Scholar 

  • Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  CAS  PubMed  Google Scholar 

  • Ayyoob M, Lee DH, Kim JH et al (2017) Synthesis of poly(glycolic acids) via solution polycondensation and investigation of their thermal degradation behaviors. Fibers Polym 18(3):407–415

    Article  CAS  Google Scholar 

  • Bacskai R (1979) Catalyst for the polymerization of 2-pyrrolidone from alkali metal: US, US4145519 A

    Google Scholar 

  • Bacskai R (1984) Synthesis of ultrahigh molecular weight nylon 4 with onium salt and crown ether-containing catalysts. Springer US 279(5):32–39

    Google Scholar 

  • Bacskai R, Fries BA (1982) The absence of CO2 in nylon-4 prepared with KOH+ radioactive CO2 catalyst. J Polym Sci A Polym Chem 20(8):2341–2344

    Article  CAS  Google Scholar 

  • Badens E, Masmoudi Y, Mouahid A et al (2018) Current situation and perspectives in drug formulation by using supercritical fluid technology. J Supercrit Fluids 134:274–283

    Article  CAS  Google Scholar 

  • Bailly M (2002) Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination 144(1-3):157–162

    Article  CAS  Google Scholar 

  • Barnes CE, Barnes AC (1981) Polymerization of 2-pyrrolidone with cesium or rubidium catalyst: US, US4247684 A

    Google Scholar 

  • Basko M, Bednarek M, Kubisa P (2015) Cationic copolymerization of L, L-lactide with hydroxyl substituted cyclic ethers. Polym Adv Technol 26(7):804–813

    Article  CAS  Google Scholar 

  • Berkel JV, Guigo N, Kolstad JJ et al (2015) Isothermal crystallization kinetics of Poly (ethylene 2,5-furandicarboxylate). Macromol Mater Eng 300(4):466–474

    Article  Google Scholar 

  • Chanfreau S, Mena M, Porras-Domínguez JR et al (2010) Enzymatic synthesis of poly-L-lactide and poly-L-lactide-co-glycolide in an ionic liquid. Bioprocess Biosyst Eng 33(5):629–638

    Article  CAS  PubMed  Google Scholar 

  • Changchun L (2017) New progress in polyester technology. Synthetic Fiber 6:1–5

    Google Scholar 

  • Changhui Z, Xia Z (2008) Progress in the synthesis of polybutylene succinate. Polyester Industry:11–14

    Google Scholar 

  • Changhui Z, Xia Z, Jitao H (2008) Research progress on the synthesis process of PBS-based polyester. Plastics:8–10

    Google Scholar 

  • Chaorong QI, Huanfeng J (2010) Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Sci Chin Chem (Engl Ed) 7:5

    Google Scholar 

  • Chaoyang W, Yaoming Z (2003) Application of chain extension reaction in the synthesis of polymer materials. Chem Propellants Polymeric Mater 19(6):23–26

    Google Scholar 

  • Chen T, Wang C, Zhao L et al (2020) Suspension polymerization of 2-pyrrolidone in the presence of CO2 and organic promoters. J Appl Polym Sci

    Google Scholar 

  • Coca-Cola Company (2016) Bio-based polyethylene terephthalate packaging and method for its preparation: China, 105254858A

    Google Scholar 

  • Cuiqiong H, Qingzhang Z, Ping W (2004) Suspension polymerization of ethylene glycolate. J Beijing Univ Chem Technol 31(3):62–65

    Google Scholar 

  • Dajun C, Yaojun L (1997) Biodegradable polyurethane elastomer modified by starch. Synthetic Rubber Industry 20(4):244–248

    Google Scholar 

  • De W, Liangchen T, Songchao T (2019) Synthesis and properties of bio-based butyramide and polybutyramide. J Funct Polym 32(1):110–116

    Google Scholar 

  • Deren Z (1981) Polymer synthesis technology. Chemical Industry Press, Beijing

    Google Scholar 

  • Desai S, Thakore IM, Sarawade BD (2000) Structure-property relationship in polyurethane elastomers containing starch as a crosslinker. Polym Eng Sci 40(5):1200–1210

    Article  CAS  Google Scholar 

  • Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    Article  CAS  PubMed  Google Scholar 

  • Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly (lactic acid) s. J Polym Environ 8(1):1–9

    Article  Google Scholar 

  • Eerhart A, Faaij A, Patel MK (2012) Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 5(4):6407–6422

    Article  CAS  Google Scholar 

  • Fan F, Zhang Z, Xing H et al (2017) Progress in synthesis of cyclic carbonates under supercritical carbon dioxide. Chem Eng Prog 36(8):2924–2933

    Google Scholar 

  • Feng ZX, Wang D, Zheng YD (2020) A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing. Biofabrication 12(3):035015

    Article  CAS  PubMed  Google Scholar 

  • Ferrari R, Pecoraro CM, Storti G et al (2014) A green route to synthesize poly (lactic acid)-based macromonomers in ScCO2 for biodegradable nanoparticle production. RSC Adv 4(25):12795–12804

    Article  CAS  Google Scholar 

  • Fucheng B (2008) Development of biomass materials and biomass material science. For Products Industry 35(1):3–7

    Google Scholar 

  • Gadda TM, Pirttimaa MM, Koivistoinen O et al (2014) The industrial potential of bio-based glycolic acid and polyglycolic acid. Appita J 67(1):12

    Google Scholar 

  • Gandini A, Coelho D, Gomes M et al (2009) Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J Mater Chem 19(45):8656–8664

    Article  CAS  Google Scholar 

  • Giovanna C, Marco N, Saverio R (1981) The anionic polymerization of 2-pyrrolidone in bulk and in suspension. Makromol Chem

    Google Scholar 

  • Göktürk E, Pemba AG, Miller SA (2015) Polyglycolic acid from the direct polymerization of renewable C1 feedstocks. Polym Chem 6(21):3918–3925

    Article  Google Scholar 

  • Gregory GL, Kociok-Khn G, Buchard A (2017) Polymers from sugars and CO2: ring-opening polymerisation and copolymerisation of cyclic carbonates derived from 2-deoxy-D-ribose. Polym Chem 8(1):2093

    Article  CAS  Google Scholar 

  • Griffith LG (2000) Polymeric biomaterials. Acta Mater 48(1):263–277

    Article  CAS  Google Scholar 

  • Guibao W, Aijun C, Qun C et al (2013) Study on the process of preparing polyhydroxyacetic acid by ring-opening polymerization under high pressure. Polym Bull 3:55–60

    Google Scholar 

  • Hong S, Min KD, Nam BU et al (2016) High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem 18(19):5142–5150

    Article  CAS  Google Scholar 

  • Hong K, Sun Q, Zhang X (2022) Fully bio-based high-performance thermosets with closed-loop recyclability

    Google Scholar 

  • Hualin W, Daqing F, Tiejun S et al (2005) Synthesis of D,L-propylene carbonate, an intermediate of poly D,L-lactic acid. Polym Mater Sci Eng 21(5):51–54

    Google Scholar 

  • Jarovitzky PA (1972) Polymerization of 2-pyrrolidone in the presence of SO 2 with mixture of an alkali metal sulfite and an alkali metal bisulfite: US, US3681294 A

    Google Scholar 

  • Jiangtao Y, Haihong M (2009) Progress in the synthesis of propylene carbonate. Polyester Industry 22(2):4–7

    Google Scholar 

  • Jiaping W (2017) Synthesis of biobased poly(2,5-furandicarboxylic acid ethylene glycol ester) and regulation of chain structure and crystallinity. Zhejiang University, Hangzhou

    Google Scholar 

  • Jinbo L (2013) Synthesis of biodegradable polybutylene succinate. Zhengzhou University, Zhengzhou

    Google Scholar 

  • Jingchang W, Xuehang S, Weijing W et al (2017) Research progress in enzymatic synthesis of aliphatic polyesters. Chem Industry Eng Progr 36(7):2592–2600

    Google Scholar 

  • Jinjie G, Katsumi S (1999) Synthesis and property study of biodegradable polyurethane insulation material. Fudan J Natural Sci Ed 38(4):418–421, 427

    Google Scholar 

  • John A, Katiyar V, Pang K et al (2007) Ni(II) and Cu (II) complexes of phenoxy-ketimine ligands: synthesis, structures and their utility in bulk ring-opening polymerization(ROP) of L-lactide. Polyhedron 26(15):4033–4044

    Article  CAS  Google Scholar 

  • Jr B (1972) Polymerization of 2-pyrrolidone using azetidinone co-activators and carbon dioxide as activator: US, US3681296 A

    Google Scholar 

  • Juan Y (2006) Synthesis and characterization of polyhydroxyacetic acid (PGA). Wuhan University of Technology, Hubei, pp 1126–1129

    Google Scholar 

  • Kawasaki N, Nakayama A, Yamano N et al (2005) Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 46(23):9987–9993

    Article  CAS  Google Scholar 

  • Keyou L, Juhua Z, Furuh X (1999) Principles and technology of polymer synthesis. Science Press, Beijing

    Google Scholar 

  • Kim NC, Kim JH, Kim JH et al (2013) Preparation of Nylon 4 microspheres via heterogeneous polymerization of 2-pyrrolidone in a paraffin oil continuous phase. Polymer Korea 37(2):211–217

    Article  CAS  Google Scholar 

  • Knoop RJI, Vogelzang W, Van Have J et al (2013) High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J Polym Sci Part A 51(19):4191–4199

    Article  CAS  Google Scholar 

  • Köhn RD, Pan Z, Sun J et al (2003) Ring-opening polymerization of D, L-lactide with bis (trimethyl triazacyclohexane) praseodymium triflate. Catal Commun 4(1):33–37

    Article  Google Scholar 

  • Lasprilla A, Martinez G, Lunelli BH et al (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328

    Article  CAS  PubMed  Google Scholar 

  • Lengtao G, Zhengfei Y, Jing W et al (2021) Screening, identification and degradation characteristics of a PET-degrading bacterial strain. Genom Appl Biol 40(3):1179–1186

    Google Scholar 

  • Li G, Zhao M, Xu F et al (2020) Synthesis and biological application of polylactic acid. Molecules 25(21)

    Google Scholar 

  • Liu S, Qin S, He M et al (2020) Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Compos Part B: Eng:108238

    Google Scholar 

  • Lowe CE (1954) Preparation of high molecular weight polyhydroxyacetic ester: U.S. Patent 2668162

    Google Scholar 

  • Lu D, Zhang X, Zhou T et al (2008) Biodegradable poly (lactic acid) copolymers. Prog Chem 20(203):339–350

    Google Scholar 

  • Min Z, Xiaomei T, Xiaoxia W (2006) Study on the factors affecting the relative molecular weight of biodegradable polyester PBS. J Shaanxi Univ Sci Technol 24:8–11

    Google Scholar 

  • Moon SI, Lee CW, Miyamoto M et al (2000) Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight Poly (L-lactic acid). J Polym Sci Part A Polym Chem 38(9):1673–1679

    Article  CAS  Google Scholar 

  • Moon SI, Lee CW, Taniguchi I et al (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly (L-lactic acid) with high molecular weight. Polymer 42(11):5059–5062

    Article  CAS  Google Scholar 

  • Morales-Huerta JC, Antxon M, MuOz-Guerra S (2016) Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer:148–158

    Google Scholar 

  • Nan L, Wenfang J, Jingbo Z et al (2003) Synthesis and purification of D, L-propylene carbonate. Petrochemicals 32(12):1073–1077

    Google Scholar 

  • Nan L, Wenfang J, Jingbo Z et al (2005) Preparation of D,L-propylene carbonate and its ring-opening polymerization in xylene solution. Polym Mater Sci Eng 21(2):73–76

    Google Scholar 

  • Nef JU (1914) Dissoziationsvorgänge in der Zuckergruppe. Justus Liebigs Ann Chem 403(2-3):204–383

    Article  Google Scholar 

  • Nejib K, George P, Dimitris A et al (2018) Solid-state polymerization of poly (ethylene furanoate) biobased polyester, II: an efficient and facile method to synthesize high molecular weight polyester appropriate for food packaging applications. Polymers 10(18):471

    Google Scholar 

  • Ney WO, Nummy WR, Barnes CE (1953) Polymers from pyrrolidone: US2638463

    Google Scholar 

  • Nofar M, Sacligil D, Carreau PJ et al (2019) Poly(lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 26:12081–12092

    Article  Google Scholar 

  • Pingkai O (2012) Biobased polymer materials. Chemical Industry Press, Beijing

    Google Scholar 

  • Pus SRS (1993) Liquefaction of wood without a catalyst. Mokukzai Gakkaishi 39(4):446–458

    Google Scholar 

  • Qimei S, Chonghui W (2015) Current status and progress of L-propylene carbonate synthesis technology. Chem Industry Progr 34(3):802–809

    Google Scholar 

  • Rosenboom JG, Hohl DK, Fleckenstein P et al (2018) Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nat Commun 9(24):2701

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeidlou S, Huneault MA, Li H et al (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677

    Article  CAS  Google Scholar 

  • Saskiawan I (2008) Biosynthesis of polyamide 4, a biobased and biodegradable polymer. Microbiology Indonesia 2(3)

    Google Scholar 

  • Shaohui C, Tao L (2020) Current status and future prospects of biodegradable plastics industry. Modern Plast Process Appl 2:50–54

    Google Scholar 

  • Shida H (1996) Studies on liquefaction of wood meals. J Appl Polym Sci 60(7):1187–1198

    Google Scholar 

  • Si JP, Kim EY, Noh W et al (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 36(7):885–892

    Article  Google Scholar 

  • Sinclair RG (1977) Copolymers of D, L-lactide and epsilon caprolactone: U.S. Patent 4045418

    Google Scholar 

  • Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626

    Article  CAS  PubMed  Google Scholar 

  • Södergård A, Stolt M (2010) Industrial production of high molecular weight poly(actic acid). Poly (Lactic Acid) synthesis, structures, properties, processing, and applications. Wiley, New York, pp 27–41

    Google Scholar 

  • Takahashi K, Kimural Y (2000) Melt/solid polondesycation of glycolic acid to obtain high-molecular-weight poly (glycolic acid). Polymer 41:8725–8728

    Article  CAS  Google Scholar 

  • Tang SY, Zhang R, Liu F et al (2015) Hansen solubility parameters of polyglycolic acid and interaction parameters between polyglycolic acid and solvents. Eur Polym J 72:83–88

    Article  CAS  Google Scholar 

  • Tao S, Chaowen L (1998) Synthesis of D,L-propylene carbonate without the need for high vacuum. Chem Industry Times 12(6):14–17

    Google Scholar 

  • Wang J, You G, Wang F et al (2004) Synthesis and characterization of polyglycollic acid via direct melt polymerization. Chin Synthetic Fiber Industry 19:44–49

    CAS  Google Scholar 

  • Wei S, You X, Lv L et al (2012) Discussion on the preparation of PLA from the mixture of L-lactide and D, L-lactide. New Chem Mater 40(5):45–47

    CAS  Google Scholar 

  • Weiliang L, Aijun C, Zeyun W et al (2013) Process for preparing polyglycolic acid by suspension polymerization. Chem Industry Progr 32:652–656

    Google Scholar 

  • Weiwei J (2009) Further optimization study on the synthesis process of high molecular weight polylactic acid. Nanjing University of Science and Technology, Nanjing

    Google Scholar 

  • Wenchao Y (2016) Preparation of biodegradable material poly-β-hydroxybutyrate. Guangzhou University, Guangzhou

    Google Scholar 

  • Whulanza Y, Rahman SF, Suyono EA et al (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal Agric Biotechnol 16:683–691

    Article  Google Scholar 

  • Woo SI, Kim BO, Jun HS et al (1995) Polymerization of aqueous lactic acid to prepare high molecular weight poly (lactic acid) by chain-extending with hexamethylene diisocyanate. Polym Bull 35(4):415–421

    Article  CAS  Google Scholar 

  • Wu L, Jin C, Sun X (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12(1):235

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Chenguang L, Aihua H (2011) Research on the purification of L-propylene carbonate. J Qingdao Univ Sci Technol Natural Sci Ed 32(5):509–513

    Google Scholar 

  • Xiabin J, Xuesi C, Xinzao Z et al (2001) Synthesis method of biodegradable aliphatic polyester. CN 1306019A

    Google Scholar 

  • Xie Hongzhou W, Linbo LB (2019) Research progress on the synthesis and modification of biobased polyester—poly(2,5-furandicarboxylic acid ethylene glycol ester). Bioprocessing 5:23–26

    Google Scholar 

  • Yamane K, Sato H, Ichikawa Y et al (2014) Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym J 46(11):769–775

    Article  CAS  Google Scholar 

  • Yao G, Yoshio K, Nobuos. (1996) Water absorbing polyurethane foams from liquefied starch. J Appl Polym Sci 60(11):1939–1949

    Article  CAS  Google Scholar 

  • Yaoming Z, Chaoyang W, Hangzhen M et al (2002) Research on the direct synthesis of polylactic acid by melt-solid polymerization. J South Chin Univ Technol Natural Sci Ed 30(11):155–159

    Google Scholar 

  • Yibin W, Chaoyang S, Wei L et al (2017) Method for preparing high molecular weight polyglycolic acid from glycolic acid or glycolic acid methyl ester. CN 107177032A

    Google Scholar 

  • Yong L, Dajun C (1988) A new method for preparing biodegradable polyester. Synthetic Rubber Industry 21(6):359

    Google Scholar 

  • Yoo YD, Km SC (1988) Crystallization behavior of semi-flexible liquid crystalline polyesters and their blends. Polym J 20:1117–1124

    Article  CAS  Google Scholar 

  • Younes GR, Maric M (2021) Bio-based and hydrolytically degradable hydroxyurethane acrylates as photocurable thermosets. J Appl Polym Sci 3:41

    Google Scholar 

  • Yuxiang S, Jin Z, Lübing Y (2000) One-step synthesis of polyhydroxyacetic acid from chloroacetic acid. Chem Industry Times 12:50–51

    Google Scholar 

  • Zeterlund. (1997) Stereochemical studies of nitrosamines: the induced circular dichroism of achiral nitrosasmines. Polym Int 42(12):1–8

    Google Scholar 

  • Zhao D, Zhu T, Li J et al (2021) Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater 6(2):346–360

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhan, F., Zhao, L. (2025). Chemical Synthesis of Biobased Materials. In: Zhao, L. (eds) Research and Applications of Bio-based Degradable Materials. Springer, Singapore. https://doi.org/10.1007/978-981-95-1188-4_5

Download citation

Publish with us

Policies and ethics