Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Plant–Endophyte Interactions: A Driving Phenomenon for Boosting Plant Health under Climate Change Conditions

  • Chapter
  • First Online:
Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate

Abstract

The endosymbiotic and ubiquitous group of microorganisms, including bacteria, fungi, and archaea that dwell inside host plant tissues without causing any harm to the plant, are termed endophytes. Over the past few decades, these microorganisms have been widely used in sustainable agriculture as biofertilizers, biocontrols, or inducers of abiotic stress tolerance. The effective colonization of the host plant by the endophyte is a necessary step in order to start these advantageous plant–microbe interactions that are engaged in boosting plant growth. Although plants naturally possess the ability to recognize potentially invasive microorganisms and launch defense mechanisms against them, these defense responses are alternatively modulated by the inoculation of beneficial endophytes, as well as pathogenic microorganisms. Furthermore, the rapidly evolving climate change conditions due to global warming and its accompanying anomalies pressurize the plant adaptation systems. Fortunately, beneficial endophytic microorganisms with potential in abiotic stress tolerance have been identified and thus can be a driving phenomenon in improving plant health under these climatic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 139.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-aminocyclopropane-1-carboxylic acid

AHL:

N-acyl-homoserine lactones

BGL:

Beta-1, 3-glucanase

CHS:

Chalcone synthase

DAPG:

2,4 Diacetylphloroglucinol

DRE/CRT:

Dehydration-responsive element/C-repeat

EPS:

Exopolysaccharides

ET:

Ethylene

ETI:

Effector-triggered immunity

FMO1:

Flavin monooxygenase 1

GA:

Gibberellins

HCN:

Hydrogen cyanide

HMGR:

3-Hydroxy-3-methylglutaryl-CoA reductase

IAA:

Indole acetic acid

ISCs:

Isochorismatases

ISR:

Induced systemic resistance

JA:

Jasmonic acid

LCOs:

Acyl lipo-chitooligosaccharides

LEA:

Late embryogenesis abundant

LOX:

Lipoxygenases

LPS:

Lipopolysaccharides

MAMPs:

Microbe-associated molecular patterns

MAPK:

Mitogen-activated protein kinase

MCPs:

Methyl-accepting chemotaxis proteins

MGD:

Mutant of Gluconacetobacter diazotrophicus strain Pal5

NPR1:

Non-expressor of pathogenesis-related 1 genes

OPDA:

12-Oxo-phytodienoic acid

Oxc:

Oxalate decarboxylase

PAL:

Phenyalanine ammonia lyase

PR 1:

Pathogenesis-related 1

PRRs:

Pattern recognition receptors

Pss:

Pseudomonas syringae pv. syringae

PTI:

Pattern-triggered immunity

QQ:

Quorum quenching

QS:

Quorum sensing

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAG:

SA and its glucoside

SAR:

Systemic acquired resistance

SylA:

SyringolinA

T3SE:

Type III secreted effectors

References

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36(7):1009–1025

    Article  CAS  PubMed  Google Scholar 

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T, Chaudhary HJ (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    Article  CAS  PubMed  Google Scholar 

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151(1):5–17

    Article  Google Scholar 

  • Álvarez B, Biosca EG, López MM (2010) On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. Tech and education topics in app microbio and microbial biotech (January): 267–279

    Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7–8):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotech 90(6):1829–1845

    Article  CAS  Google Scholar 

  • Aranda S, Montes-Borrego M, Jiménez-Díaz RM, Landa BB (2011) Microbial communities associated with the root system of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil 343(1):329–345

    Article  CAS  Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) In: Arora NK (ed) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs BT- Plant microbe symbiosis: fundamentals and advances. Springer India, New Delhi, pp 411–449

    Google Scholar 

  • Arya N, Rana A, Rajwar A, Sahgal M, Sharma AK (2018) Biocontrol efficacy of siderophore producing indigenous pseudomonas strains against fusarium wilt in tomato. Natl Acad Sci Lett 41(3):133–136

    Article  CAS  Google Scholar 

  • Balsanelli E, Serrato RV, De Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, De Souza EM, Monteiro RA (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12(8):2233–2244

    CAS  PubMed  Google Scholar 

  • Balsanelli E, Tuleski TR, de Baura VA, Yates MG, Chubatsu LS, de Oliveira PF, de Souza EM, Monteiro RA (2013) Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides. PLoS One 8(10):e77001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir K, Matsui A, Rasheed S, Seki M (2019) Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000 Res 8

    Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Bhore SJ, Ravichantar N, Loh CY (2010) Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5(5):191

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhutani N, Maheshwari R, Suneja P (2018) Isolation and characterization of plant growth promoting endophytic bacteria isolated from Vigna radiata. Indian J Agric Res 52:6

    Google Scholar 

  • Bible AN, Chang M, Morrell Falvey JL (2021) Identification of a diguanylate cyclase expressed in the presence of plants and its application for discovering candidate gene products involved in plant colonization by Pantoea sp. YR343. PLoS One 16(7):e0248607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee IJ, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127

    Article  CAS  Google Scholar 

  • Böhm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20(5):526–533

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Loren V, van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  PubMed  Google Scholar 

  • Buschart A, Sachs S, Chen X, Herglotz J, Krause A, Reinhold-Hurek B (2012) Flagella mediate endophytic competence rather than act as MAMPs in rice-Azoarcus sp. strain BH72 interactions. Mol Plant-Microbe Interact 25(2):191–199

    Article  CAS  PubMed  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and Pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62(3):865–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JD (2013) A downy mildew effector attenuates salicylic acid–triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 11(12):e1001732

    Article  PubMed  PubMed Central  Google Scholar 

  • Christian N, Sedio BE, Florez-Buitrago X, Ramírez-Camejo LA, Rojas EI, Mejía LC, Palmedo S, Rose A, Schroeder JW, Herre EA (2020) Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry. Am J Bot 107(2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl and environmental. Microbiology 71(4):1685–1693

    CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(2):208–218

    Article  CAS  PubMed  Google Scholar 

  • de Bary A (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. Engelmann

    Google Scholar 

  • De Mot R, Vanderleyden J (1991) Purification of a root-adhesive outer membrane protein of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Lett 81(3):323–327

    Article  Google Scholar 

  • Deng Y, Chen H, Li C, Xu J, Qi Q, Xu Y, Zhu Y, Zheng J, Peng D, Ruan L, Sun M (2019) Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Commun Biol 2(1):1–2

    Article  Google Scholar 

  • Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301(1–2):123–134

    Article  Google Scholar 

  • Dharmatilake AJ, Bauer WD (1992) Chemotaxis of Rhizobium meliloti towards nodulation gene- inducing compounds from alfalfa roots. Appl Environ Microbiol 58(4):1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K (2011) Metabolic priming by a secreted fungal effector. Nature 478(7369):395–398

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23(4):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(3–12):5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244(1):221–230

    Article  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J For Cell Mol Biol 18(3):265–276

    Article  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnica S, Liao Z, Hamard S, Waller F, Parepa M, Bossdorf O (2022) Environmental stress determines the colonization and impact of an endophytic fungus on invasive knotweed. Biol Invasions 24(6):1785–1795

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20(3):186–194

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Bio Biochem 39(8):1968–1977

    Article  CAS  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact 22(9):1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 1506

    Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. Biotic interactions in plant-pathogen associations: 87–119

    Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  PubMed  Google Scholar 

  • Hurley B, Lee D, Mott A, Wilton M, Liu J, Liu YC (2014a) The pseudomonas syringae type III effector HopF2 suppresses arabidopsis stomatal immunity. PLoS One 9(12):1–20

    Article  Google Scholar 

  • Hurley B, Lee D, Mott A, Wilton M, Liu J, Liu Yulu C (2014b) The pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity. PLoS One 9(12):e114921

    Article  PubMed  PubMed Central  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18(2):169–178

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106

    Article  CAS  PubMed  Google Scholar 

  • Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT (2007) AJ domain virulence effector of pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 6:499–508

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Hwang BK (1994) Differential accumulation of β-1, 3-glucanase and chitinase isoforms in pepper stems infected by compatible and incompatible isolates of Phytophthora capsici. Physiol Mol Plant Pathol 45(3):195–209

    Article  CAS  Google Scholar 

  • Knight H (1999) Calcium signaling during abiotic stress in plants. In International review of cytology, 269–324. Elsevier

    Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113(2):158–164

    Article  CAS  PubMed  Google Scholar 

  • Kost T, Stopnisek N, Agnoli K, Eberl L, Weisskopf L (2013) Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front Microbiol 4(JAN):1–9

    Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Perspective chemical ecology of endophytic fungi : origins of secondary metabolites. CHBIOL 19(7):792–798

    CAS  Google Scholar 

  • Lebeda A, Luhová L, Sedlářová M, Jančová D (2001) The role of enzymes in plant-fungal pathogens interactions/Die Rolle der Enzyme in den Beziehungen zwischen Pflanzen und pilzlichen Erregern. J Plant Dis Protect:89–111

    Google Scholar 

  • Li Y, Zhao M, Chen W, Du H, Xie X, Wang D, Dai Y, Xia Q, Wang G (2020) Comparative transcriptomic analysis reveals that multiple hormone signal transduction and carbohydrate metabolic pathways are affected by Bacillus cereus in Nicotiana tabacum. Genomics 112(6):4254–4267

    Article  CAS  PubMed  Google Scholar 

  • van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, Kumlehn J, Doehlemann G (2012) A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24(3):1285–1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5(4–7):821–840

    Article  CAS  Google Scholar 

  • Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M (2014) Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun 5(1):1

    Google Scholar 

  • Lòpez-Fernàndez S, Compant S, Vrhovsek U, Bianchedi PL, Sessitsch A, Pertot I, Campisano A (2016) Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways. Plant Soil 405(1–2):155–175

    Article  Google Scholar 

  • López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22(6):527–537

    Article  PubMed  Google Scholar 

  • Lu H, Wei T, Lou H, Shu X, Chen Q (2021) A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J Fungi 7:9

    Article  Google Scholar 

  • Lu X, Zhou D, Chen X, Zhang J, Huang H, Wei L (2017) Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil 416(1):53–66

    Article  CAS  Google Scholar 

  • Lugtenberg B (2015) Principles of plant-microbe interactions: Microbes for sustainable agriculture. Principles of Plant-Microbe Interact: Microbes for Sustainable Agriculture: 1–448

    Google Scholar 

  • Macho AP, Zipfel C (2015) Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 23:14–22

    Article  CAS  PubMed  Google Scholar 

  • Meneses C, Gonçalves T, Alquéres S, Rouws L, Serrato R, Vidal M, Baldani JI (2017) Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 416(1):133–147

    Article  CAS  Google Scholar 

  • Meneses CH, Rouws LF, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24(12):1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Mengistu AA (2020) Endophytes: colonization, behaviour, and their role in defense mechanism. Int J Microbiol 2020

    Google Scholar 

  • Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19(5):502–511

    Article  PubMed  Google Scholar 

  • Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137(9):2241–2246

    Article  CAS  Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22(3):973–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam MS, Safaie N, Soltani J, Hagh-Doust N (2021) Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol Biochem 160:225–238

    Article  Google Scholar 

  • Monier J-M, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci 100(26):15977–15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167(8):659–665

    Article  CAS  PubMed  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the trichoderma harzianum- plant beneficial interaction. Mol Plant Microbe Interact 22(8):1021–1031

    Article  PubMed  Google Scholar 

  • Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169(6):614–620

    Article  PubMed  Google Scholar 

  • Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26(1):41–51

    PubMed  PubMed Central  Google Scholar 

  • Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G (2013) Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog 9(2):e1003177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar A, Udhayakumar R, Naveenkumar R (2017) Role of bacterial endophytes in plant disease control. (November):133–161

    Google Scholar 

  • Nag P, Shriti S, Das S (2020) Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 129(2):186–198

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011). Role of phosphatase enzymes in soil. In Phosphorus in action (pp. 215–243). Springer, Berlin, Heidelberg

    Google Scholar 

  • Naureen A, Nasim FU, Choudhary MS, Ashraf M, Grundler FM, Schleker AS (2022) A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Arch Microbiol 204(3):1–13

    Article  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Oku S, Komatsu A, Tajima T, Nakashimada Y, Kato J (2012) Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ 27(4):462–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6

    Google Scholar 

  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18(7):402–411

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Plieth C, Hansen U, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18(5):491–497

    Article  CAS  PubMed  Google Scholar 

  • Rabe F, Ajami-Rashidi Z, Doehlemann G, Kahmann R, Djamei A (2013) Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Mol Microbiol 89(1):179–188

    Article  CAS  PubMed  Google Scholar 

  • von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229(1):73–85

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25(1):47–55

    Article  Google Scholar 

  • Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted Symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6(7):e14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold HB, Maes T, Gemmer S, Van Montagu M, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 19(2):181–188

    Article  Google Scholar 

  • Rodrigo M, Pizzirani-Kleiner AA, Araujo WL, Jose MR (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267

    Article  Google Scholar 

  • Rodríguez M, Torres M, Blanco L, Béjar V, Sampedro I, Llamas I (2020) Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Sci Rep 10(1):4121

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404–416

    Article  PubMed  Google Scholar 

  • Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science (New York, NY) 308(5729):1783–1786

    Article  CAS  Google Scholar 

  • Rossi FA, Medeot DB, Liaudat JP, Pistorio M, Jofré E (2016) In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots. Microbiol Res 190:55–62

    Article  CAS  PubMed  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102(3):463–472

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11(4):691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangal V, Goodfellow M, Blom J, Tan GY, Klenk HP, Sutcliffe IC (2018) Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol 9:22–81

    Article  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Schellenberg B, Ramel C, Dudler R (2010) Pseudomonas syringae virulence factor syringolin a counteracts stomatal immunity by proteasome inhibition. Mol Plant-Microbe Interact 23(10):1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithöfer A, Becker A, Kogel KH, Schikora A (2014) N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26(6):2708–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, Van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 111(2):585–592

    Article  CAS  PubMed  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl LE, Hartmann A (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29(5):909–918

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust H, Jür SD (1999) The endophyte-host interaction: a balanced antagonism? Mycological Res 103(10):1275–1283

    Article  Google Scholar 

  • Seherm H, Coakley SM (2003) Plant pathogens in a changing world. Australas Plant Pathol 32(2):157–165

    Article  Google Scholar 

  • Shabanamol S et al (2018) Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol Mol Plant Pathol 102:46–54

    Article  CAS  Google Scholar 

  • Shah N, Gislason AS, Becker M, Belmonte MF, Fernando WD, de Kievit TR (2020) Investigation of the quorum-sensing regulon of the biocontrol bacterium Pseudomonas chlororaphis strain PA23. PLoS One 15(2):e0226232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharaf H, Rodrigues RR, Moon J, Zhang B, Mills K, Williams MA (2019) Unprecedented bacterial community richness in soybean nodules vary with cultivar and water status. Microbiome 7(1):1–18

    Article  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1(1):61–63

    Google Scholar 

  • Shiferaw D, Diriba M, Gezahegn B (2013) Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). Int J Agric Res 8(3):123–136

    Article  Google Scholar 

  • Sirrenberg A, Göbel C, Grond S, Cempinski N, Feussner I, Pawlowski K (2007) Piriformospora indica induces increased root branching in Arabidopsis through IAA production. In Abstract in Meeting Report of Research Group (Vol. 546)

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892):959–962

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Taghavi S et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6(5):19

    Article  Google Scholar 

  • Takahashi S, Anwar MR (2007) Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an andosol. Field Crop Res 101(2):160–171

    Article  Google Scholar 

  • Talbot NJ (2010) Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants? PLoS Biol 8(2):e1000308

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Han X, Kahmann R (2015) Microbial effectors target multiple steps in the salicylic acid production and signaling pathway. Front Plant Sci 6:349

    Article  PubMed  PubMed Central  Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356(1–2):35–49

    Article  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125(1):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M et al (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143(1):364–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. 71(11):7292–7300

    Google Scholar 

  • Üstün S, Bartetzko V, Börnke F (2013) The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog 9(6):e1003427

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaishnav A, Shukla AK, Sharma A, Kumar R, Choudhary DK (2019) Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regulat 38(2):650–668

    Article  CAS  Google Scholar 

  • Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P (2021) The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 10(2):1–29

    Article  Google Scholar 

  • Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ, Maeda J, Forshey K, den Os D, Kwiecien NW, Coon JJ, Barker DG (2015) A role for the mevalonate pathway in early plant symbiotic signaling. Proc Natl Acad Sci 112(31):781–9786

    Article  Google Scholar 

  • Wang HW, Ma CY, Xu FJ, Lu F, Zhang W, Dai CC (2021) Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates. Microbiol Res 250(November 2020):126765

    Article  CAS  PubMed  Google Scholar 

  • Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: acremonium zeae antibiotics inhibitory to aspergillus flavus and fusarium verticillioides. Mycological Res 109(5):610–618

    Article  CAS  Google Scholar 

  • Wilson M, MacNab R, Henderson B (2002) Bacterial adhesion as a virulence mechanism. Bacterial disease mechanisms: an introduction to cellular microbiology 1: 353–404

    Google Scholar 

  • de Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64(21):2726–2732

    Article  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):165–183

    Article  Google Scholar 

  • Xu T, Vo QA, Barnett SJ, Ballard RA, Zhu Y, Franco CM (2022) Revealing the underlying mechanisms mediated by endophytic actinobacteria to enhance the rhizobia—chickpea (Cicer arietinum L.) symbiosis. Plant Soil 474(1–2):299–318

    Article  CAS  Google Scholar 

  • Yaron S, Römling U (2014) Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microbial Biotech 7(6):496–516

    Article  Google Scholar 

  • Yimer D (2019) Components, mechanisms of action, success under greenhouse and field condition, market availability, formulation and inoculants development on biofertilizer. Biomed J Sci Technical Res 12(4):9366–9372

    Google Scholar 

  • Zarkani AA, Stein E, Röhrich CR, Schikora M, Evguenieva-Hackenberg E, Degenkolb T, Vilcinskas A, Klug G, Kogel KH, Schikora A (2013) Homoserine lactones influence the reaction of plants to Rhizobia. Int J Mol Sci 14(8):17122–17146

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinniel ZDK, Denise K, Pat L, Harris NB, Zhengyu F, Daniel K, Phyllis H, Carol AI, Alahari A, Raúl GB, Anne KV (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68(5):2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543(7645):328–336

    Article  CAS  PubMed  Google Scholar 

  • Ziska L, Tomecek M, Gealy D (2010) Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agron J 102

    Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the facilities provided by the Department of Botany, Sikkim University, Sikkim, and the Department of Biotechnology for funding services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurung, S.A., Rai, A.K., Sunar, K., Das, K. (2023). Plant–Endophyte Interactions: A Driving Phenomenon for Boosting Plant Health under Climate Change Conditions. In: Mathur, P., Kapoor, R., Roy, S. (eds) Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0030-5_10

Download citation

Keywords

Publish with us

Policies and ethics