Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Transverse Intensity Distribution on the Far-Field Plane of Azimuthal Walsh Filters

  • Chapter
  • First Online:
Azimuthal Walsh Filters

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 10))

  • 172 Accesses

Abstract

Azimuthal Walsh filters derived from azimuthal Walsh functions can be used as pupil filters for manipulating far-field diffraction characteristics of optical imaging systems. These asymmetric filters open up new possibilities for wavefront engineering. Azimuthal Walsh functions form a closed set of normal orthogonal functions defined over the interval (0, 2π), and have values +1 or −1 within the interval. This chapter reports the diffraction characteristics of azimuthal Walsh filters placed on the exit pupil of an axially symmetric optical system to produce exotic 2D and 3D beam of light on the far-field plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Toraldo di Francia, La Diffrazione Delle Luce, Edizioni Scientifiche Einaudi (1968)

    Google Scholar 

  2. G. Toraldo di Francia, Super-gain antennas and optical resolving power. Nuovo. Cimento. Supple. 9(3), 426–438 (1952)

    Article  Google Scholar 

  3. G. Toraldo di Francia, Nuovo pupille superresolventi. Atti. Fond. Giorgio. Ronchi. 7, 366–372 (1952)

    Google Scholar 

  4. L.N. Hazra, Walsh filters in tailoring of resolution in microscopic imaging. Micron 38(2), 129–135 (2007)

    Article  Google Scholar 

  5. L.N. Hazra, A new class of optimum amplitude filters. Opt. Commun. 21(2), 232–236 (1977)

    Article  ADS  Google Scholar 

  6. L.N. Hazra, P.K. Purkait, M. De, Apodization of aberrated pupils. Can. J. Phys. 57(9), 1340–1346 (1979)

    Article  ADS  Google Scholar 

  7. P.K. Purkait, Application of walsh functions in problems of aberrated optical imagery. Ph.D. dissertation, University of Calcutta, India

    Google Scholar 

  8. L.N. Hazra, A. Guha, Far-field diffraction properties of radial Walsh filters. J. Opt. Soc. Am. A 3, 843–846 (1986)

    Article  ADS  Google Scholar 

  9. M. De, L.N. Hazra, Walsh functions in problems of optical imagery. Opt. Acta 24, 221–234 (1977)

    Article  ADS  Google Scholar 

  10. H. Lakshminarayan, P. Mukherjee, Optical masks using walsh functions, in ed. by R. Guenther, D. Steel Encyclopedia of Modern Optics, vol. 5, 2nd edn. (Elsevier, Oxford, 2018), pp. 14–29

    Google Scholar 

  11. P. Mukherjee, L.N. Hazra, Far-field diffraction properties of annular walsh filters. Adv. Opt. Technol. ID 360450 (2013)

    Google Scholar 

  12. O. Nakamura, K. Toyoda, Side lobe depression of the point-spread function in annular pupil optical systems. Appl. Opt. 30(22), 3242–3245 (1991)

    Article  ADS  Google Scholar 

  13. E.H. Linfoot, E. Wolf, Diffraction images in systems with annular aperture. Proc. Phys. Soc. B 66, 145–149 (1953)

    Article  ADS  Google Scholar 

  14. C.J.R. Sheppard, T. Wilson, Imaging properties of annular lenses. Appl. Opt. 18(22), 3764–3769 (1979)

    Article  ADS  Google Scholar 

  15. A. Boivin, Théorie et calcul des figures de diffraction de revolution (Gauthier-Villars, Paris, 1964)

    Google Scholar 

  16. W.T. Welford, Use of annular apertures to increase focal depth. J. Opt. Soc. Am. 50, 749–753 (1960)

    Article  ADS  Google Scholar 

  17. C.J.R. Sheppard, A. Choudhury, Annular pupils, radial polarization, and superresolution. Appl. Opt. 43(22), 4322–4327 (2004)

    Article  ADS  Google Scholar 

  18. M. Yun, M. Wang, L. Liu, Superresolution with annular binary phase filter in the 4Pi confocal system. J. Opt. A: Pure Appl. Opt. 7(11), 640–644 (2005)

    Article  ADS  Google Scholar 

  19. G.B. Airy, Trans. Cambridge Phil. Soc. 5, 283 (1835)

    ADS  Google Scholar 

  20. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980)

    MATH  Google Scholar 

  21. A.I. Mahan, C.V. Bitterli, S.M. Cannon, Far-field diffraction patterns of Single and Multiple Apertures bounded by arcs and radii of concentric circles. J. Opt. Soc. Am. A 54(6), 721–732 (1964)

    Article  ADS  Google Scholar 

  22. R.A. Lessard, S.C. Som, Imaging properties of sector-shaped apertures. App. Opt., II(4), 811–817 (1972)

    Google Scholar 

  23. T. Vierke, Jahns Jürgen, Diffraction theory for azimuthally structured Fresnel zone plate. J. Opt. Soc. Am. A 31(2), 363–372 (2014)

    Article  ADS  Google Scholar 

  24. S. Mukhopadhyay, S. Sarkar, K. Bhattacharya, L.N. Hazra, Olarisation phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator. Opt. Eng. 52(3), 035602-1–035602-6

    Google Scholar 

  25. I. Bhattacharya, A. Saha. L. Hazra, Asymmetrical PSF by Azimuthal Walsh Filters, IEEE XPLORE (2015). ISBN: 978-1-4673-7519-1/15

    Google Scholar 

  26. I. Bhattacharya, L. Hazra, Azimuthal walsh filters: an interesting tool to produce 2D and 3D light structures, in ed. by A. Martínez-García et al. Progress in Optomechatronic Technologie, vol. 233 (Springer Proceedings in Physics, 2019), pp. 11–20

    Google Scholar 

  27. A. Sabatyan, J. Rafighdoost, Azimuthal phase-shifted zone plates to produce petal-like beams and ring lattice structures. J. Opt. Soc. Am. A 34(5), 919–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Bhattacharya .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, I., Hazra, L. (2020). Transverse Intensity Distribution on the Far-Field Plane of Azimuthal Walsh Filters. In: Azimuthal Walsh Filters. Progress in Optical Science and Photonics, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-6099-6_2

Download citation

Keywords

Publish with us

Policies and ethics