Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Self-similarity in Transverse Intensity Distributions on the Far-Field Plane of Self-similar Azimuthal Walsh Filters

  • Chapter
  • First Online:
Azimuthal Walsh Filters

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 10))

  • 176 Accesses

Abstract

In this chapter, illumination beam shaping is proposed using azimuthal Walsh filters derived from azimuthal Walsh functions, in and around the focal plane of a rotationally symmetric imaging system and studied for finding out self-similar groups and sub-groups for different orders to examine self-similarity existing between their corresponding transverse intensity distributions at the far-field plane. The unique rotational self-similarities observed in 2D intensity distributions at the transverse far-field plane for adjacent orders of azimuthal Walsh filters are also mentioned. High speed spatial light modulators (SLMs) can be successfully used to code and control illumination in and around the tightly focused field to generate these filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Takayasu, Fractals in Physical Science (Manchester University, Manchester, 1990)

    MATH  Google Scholar 

  2. C. Allain, M. Cloitre, Optical diffraction on fractals. Phys. Rev. B 33, 3566 (1986)

    Article  ADS  Google Scholar 

  3. J. Uozumi, T. Asakura, Fractal Optics, in Current Trends in Optics, ed. by J.C. Dainty (Academic Press, Cambridge, London, 1994), pp. 189–196

    Google Scholar 

  4. Q.Q. Zhang, J.G. Wang et aḷ, A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J. Opt. 13(5), 055301,6 (2011)

    Google Scholar 

  5. S.H. Tao, X.C. Yuan et al., Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl. Phys. Lett. 89(3), 031105 (2006)

    Article  ADS  Google Scholar 

  6. J.A. Monsoriu, W.D. Furlan, P. Andreas, J. Lancis, Fractal conical lenses. Opt. Exp. 14(20), 9077–9082 (2006)

    Article  ADS  Google Scholar 

  7. V. Ferrando, A. Calatayud, F. Gimenez, W.D. Furlan, J.A. Monsoriu, Cantor dust zone plates. Opt. Exp. 21(3), 2701–2706 (2013)

    Article  ADS  Google Scholar 

  8. H. Melville, G.F. Milne, Optical trapping of three-dimensional structures using dynamic holograms. Opt. Exp. 11(26), 3562–3567 (2003)

    Article  ADS  Google Scholar 

  9. E. Schonbrun, C. Rinzler, K.B. Crozier, Microfabricated water immersion zone plate optical tweezer. Appl. Phys. Lett. 92, 071112 (2008)

    Article  ADS  Google Scholar 

  10. A. Ashkin, J.M. Dziedzic et al., Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)

    Article  ADS  Google Scholar 

  11. K.C. Neumann, S.M. Block, Optical trapping. Rev. Sci. Instrum. 75(9), 2787–2809 (2004)

    Article  ADS  Google Scholar 

  12. K. Dholakia, T. Cizmar, Shaping the future manipulation. Nat. Photonics 5, 335–342 (2011)

    Article  ADS  Google Scholar 

  13. J.E. Molloy, M.J. Padgett, Lights, action: optical tweezers. Contemp. Phys. 43(4), 241–258 (2002)

    Article  ADS  Google Scholar 

  14. D.G. Grier, A revolution in optical manipulation. Nature (London) 424(6950), 810–816 (2003)

    Article  ADS  Google Scholar 

  15. J. Zhang, Y. Cao, J. Zheng, Fibonacci quasi-periodic superstructure fiber Bragg gratings. Optik 121(5), 417–421 (2010)

    Article  ADS  Google Scholar 

  16. K. Wu, G.P. Wang, One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt. Lett. 38(12), 2032–2034 (2013)

    Article  ADS  Google Scholar 

  17. A. Calatayud, L. Remon, W.D. Furlan, J.A. Monsoriu, Twin axial vortices generated by Fibinacci lenses. Opt. Exp. 21(8), 10234–10239 (2013)

    Article  ADS  Google Scholar 

  18. J.A. Monsoriu, C.J. Zapata-Rodriguez, W.D. Furlan, Fractal axicons. Opt. Commun. 263, 1–5 (2006)

    Article  ADS  Google Scholar 

  19. R. Verma, V. Banerjee, P. Senthilkumaran, Redundancy in Cantor diffractals. Opt. Commun. 263, 1–5 (2006)

    Article  Google Scholar 

  20. R. Verma, M.K. Sharma, V. Banerjee, P. Senthilkumaran, Robustness of Cantor diffractals. Opt. Exp. 21(7), 7951–7956 (2013)

    Article  ADS  Google Scholar 

  21. W. Gallermann, M. Kohmoto, B. Sutherland, P.C. Taylor, Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72(5), 633–636 (1994)

    Article  ADS  Google Scholar 

  22. X. Yang, Y. Liu, X. Fu, Transmission properties of light through the Fibonacci-class multilayers. Phys. Rev. B 59(7), 4545–4548 (1999)

    Article  ADS  Google Scholar 

  23. N.V. Grushina, P.V. Korolenko, S.N. Markova, Special features of the diffraction of light on optical Fibonacci gratings. Moscow Univ. Phys. Bull. 63(2), 123–126 (2008)

    Article  ADS  Google Scholar 

  24. N. Gao, Y. Zhang, C. Xie, Circular Fibonacci gratings. Appl. Opt. 50(31), G142–G148 (2011)

    Article  Google Scholar 

  25. R. Verma, V. Banerjee, P. Senthilkumaran, Fractal signatures in the aperiodic Fibonacci grating. Opt. Lett. 39(9), 2557–2560 (2014)

    Article  ADS  Google Scholar 

  26. R. Verma, M.K. Sharma, P. Senthilkumaran, V. Banerjee, Analysis of Fibonacci gratings and their diffraction patterns. J. Opt. Soc. Am. A 31(7), 1473–1480 (2014)

    Google Scholar 

  27. I. Bhattacharya, Self-similarity in azimuthal Walsh filters and corresponding far-field diffraction characteristics: a unique study to control tightly focused fields and coupling of light into metamaterials, plasmonic structure and waveguides, in Proceedings of SPIE 11257, Plasmonics in Biology and Medicine (vol. XVII), 2020, pp. 1125717:1-14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Bhattacharya .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, I., Hazra, L. (2020). Self-similarity in Transverse Intensity Distributions on the Far-Field Plane of Self-similar Azimuthal Walsh Filters. In: Azimuthal Walsh Filters. Progress in Optical Science and Photonics, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-6099-6_3

Download citation

Keywords

Publish with us

Policies and ethics