Abstract
In this chapter, illumination beam shaping is proposed using azimuthal Walsh filters derived from azimuthal Walsh functions, in and around the focal plane of a rotationally symmetric imaging system and studied for finding out self-similar groups and sub-groups for different orders to examine self-similarity existing between their corresponding transverse intensity distributions at the far-field plane. The unique rotational self-similarities observed in 2D intensity distributions at the transverse far-field plane for adjacent orders of azimuthal Walsh filters are also mentioned. High speed spatial light modulators (SLMs) can be successfully used to code and control illumination in and around the tightly focused field to generate these filters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
H. Takayasu, Fractals in Physical Science (Manchester University, Manchester, 1990)
C. Allain, M. Cloitre, Optical diffraction on fractals. Phys. Rev. B 33, 3566 (1986)
J. Uozumi, T. Asakura, Fractal Optics, in Current Trends in Optics, ed. by J.C. Dainty (Academic Press, Cambridge, London, 1994), pp. 189–196
Q.Q. Zhang, J.G. Wang et aḷ, A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J. Opt. 13(5), 055301,6 (2011)
S.H. Tao, X.C. Yuan et al., Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl. Phys. Lett. 89(3), 031105 (2006)
J.A. Monsoriu, W.D. Furlan, P. Andreas, J. Lancis, Fractal conical lenses. Opt. Exp. 14(20), 9077–9082 (2006)
V. Ferrando, A. Calatayud, F. Gimenez, W.D. Furlan, J.A. Monsoriu, Cantor dust zone plates. Opt. Exp. 21(3), 2701–2706 (2013)
H. Melville, G.F. Milne, Optical trapping of three-dimensional structures using dynamic holograms. Opt. Exp. 11(26), 3562–3567 (2003)
E. Schonbrun, C. Rinzler, K.B. Crozier, Microfabricated water immersion zone plate optical tweezer. Appl. Phys. Lett. 92, 071112 (2008)
A. Ashkin, J.M. Dziedzic et al., Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)
K.C. Neumann, S.M. Block, Optical trapping. Rev. Sci. Instrum. 75(9), 2787–2809 (2004)
K. Dholakia, T. Cizmar, Shaping the future manipulation. Nat. Photonics 5, 335–342 (2011)
J.E. Molloy, M.J. Padgett, Lights, action: optical tweezers. Contemp. Phys. 43(4), 241–258 (2002)
D.G. Grier, A revolution in optical manipulation. Nature (London) 424(6950), 810–816 (2003)
J. Zhang, Y. Cao, J. Zheng, Fibonacci quasi-periodic superstructure fiber Bragg gratings. Optik 121(5), 417–421 (2010)
K. Wu, G.P. Wang, One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt. Lett. 38(12), 2032–2034 (2013)
A. Calatayud, L. Remon, W.D. Furlan, J.A. Monsoriu, Twin axial vortices generated by Fibinacci lenses. Opt. Exp. 21(8), 10234–10239 (2013)
J.A. Monsoriu, C.J. Zapata-Rodriguez, W.D. Furlan, Fractal axicons. Opt. Commun. 263, 1–5 (2006)
R. Verma, V. Banerjee, P. Senthilkumaran, Redundancy in Cantor diffractals. Opt. Commun. 263, 1–5 (2006)
R. Verma, M.K. Sharma, V. Banerjee, P. Senthilkumaran, Robustness of Cantor diffractals. Opt. Exp. 21(7), 7951–7956 (2013)
W. Gallermann, M. Kohmoto, B. Sutherland, P.C. Taylor, Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72(5), 633–636 (1994)
X. Yang, Y. Liu, X. Fu, Transmission properties of light through the Fibonacci-class multilayers. Phys. Rev. B 59(7), 4545–4548 (1999)
N.V. Grushina, P.V. Korolenko, S.N. Markova, Special features of the diffraction of light on optical Fibonacci gratings. Moscow Univ. Phys. Bull. 63(2), 123–126 (2008)
N. Gao, Y. Zhang, C. Xie, Circular Fibonacci gratings. Appl. Opt. 50(31), G142–G148 (2011)
R. Verma, V. Banerjee, P. Senthilkumaran, Fractal signatures in the aperiodic Fibonacci grating. Opt. Lett. 39(9), 2557–2560 (2014)
R. Verma, M.K. Sharma, P. Senthilkumaran, V. Banerjee, Analysis of Fibonacci gratings and their diffraction patterns. J. Opt. Soc. Am. A 31(7), 1473–1480 (2014)
I. Bhattacharya, Self-similarity in azimuthal Walsh filters and corresponding far-field diffraction characteristics: a unique study to control tightly focused fields and coupling of light into metamaterials, plasmonic structure and waveguides, in Proceedings of SPIE 11257, Plasmonics in Biology and Medicine (vol. XVII), 2020, pp. 1125717:1-14
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Bhattacharya, I., Hazra, L. (2020). Self-similarity in Transverse Intensity Distributions on the Far-Field Plane of Self-similar Azimuthal Walsh Filters. In: Azimuthal Walsh Filters. Progress in Optical Science and Photonics, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-6099-6_3
Download citation
DOI: https://doi.org/10.1007/978-981-15-6099-6_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-6098-9
Online ISBN: 978-981-15-6099-6
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)