Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Monkey Brain, Human Brain

  • Chapter
  • First Online:
A Brain for Speech
  • 1728 Accesses

Abstract

How did the human language circuits originate? This chapter addresses studies performed in monkeys that have provided a comprehensive view of the large-scale organization of brain networks. Initially, these studies were restricted to the visual system, evidencing the separation of two visual pathways, a dorsal one conveying spatial and movement information, and a ventral one conveying information about object’s characteristics. A similar scaffolding was later found in the auditory system, from which the modern notion of dorsal and ventral language pathways originated. In this framework, the phonological loop is proposed to have emerged as a derivation of the dorsal auditory pathway during human evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz F (1988) Homology: a comparative or a historical concept? Acta Biotheor 37:27–29

    Article  PubMed  Google Scholar 

  • Aboitiz F (1995) Working memory networks and the origin of language areas in the human brain. Med Hypotheses 44:504–506

    Article  PubMed  Google Scholar 

  • Aboitiz F (2012) Gestures, vocalizations, and memory in language origins. Front Evol Neurosci 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Aboitiz F, García VR (1997) The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Res Rev 25:381–396

    Article  PubMed  Google Scholar 

  • Aboitiz F, García R (2009) Merging of phonological and gestural circuits in early language evolution. Rev Neurosci 20:71–84

    Article  PubMed  Google Scholar 

  • Aboitiz F, García RR, Bosman C, Brunetti E (2006) Cortical memory mechanisms and language origins. Brain Lang 98:40–56

    Article  PubMed  Google Scholar 

  • Aboitiz F, Aboitiz S, García R (2010) The phonological loop: a key innovation in human evolution. Curr Anthropol 51:S55–S65

    Article  Google Scholar 

  • Arnsten AF (2013) The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic 1937–2003. Cereb Cortex 23:2269–2281

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    Article  PubMed  Google Scholar 

  • Bigelow J, Rossi B, Poremba A (2014) Neural correlates of short-term memory in primate auditory cortex. Front Neurosci 8:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchsbaum BR, D’Esposito M (2008) The search for the phonological store: from loop to convolution. J Cogn Neurosci 20:762–778

    Article  PubMed  Google Scholar 

  • Catani M, Bambini V (2014) A model for Social Communication And Language Evolution and Development (SCALED). Curr Opin Neurobiol 28:165–171

    Article  PubMed  Google Scholar 

  • Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989a) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421

    Article  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989b) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  PubMed  Google Scholar 

  • Chaplin TA, Yu HH, Soares JG, Gattass R, Rosa MG (2013) A conserved pattern of differential expansion of cortical areas in simian primates. J Neurosci 33:15120–15125

    Article  PubMed  Google Scholar 

  • Cogan GB, Thesen T, Carlson C, Doyle W, Devinsky O, Pesaran B (2014) Sensory-motor transformations for speech occur bilaterally. Nature 507:94–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 125:1054–1069

    Article  PubMed  Google Scholar 

  • Deacon TW (1992) Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Res 573:8–26

    Article  PubMed  Google Scholar 

  • D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66:115–142

    Article  PubMed  Google Scholar 

  • Diehl MM, Romanski LM (2014) Responses of prefrontal multisensory neurons to mismatching faces and vocalizations. J Neurosci 34:11233–11243

    Article  PubMed  PubMed Central  Google Scholar 

  • Eccles JC (1967) The inhibitory control of spinal reflex action. Electroencephalogr Clin Neurophysiol Suppl 25:20–34

    Google Scholar 

  • Frey S, Campbell JS, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–1144

    Article  PubMed  Google Scholar 

  • Frey S, Mackey S, Petrides M (2014) Cortico-cortical connections of areas 44 and 45B in the macaque monkey. Brain Lang 31:36–55

    Article  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483

    PubMed  Google Scholar 

  • Fuster JM (1995) Memory in the Cerebral Cortex. Bradford, MIT Press, Cambridge

    Google Scholar 

  • Fuster JM (2003) Cortex and Mind. Unifying Cognition. Oxford University Press, Oxford

    Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  PubMed  Google Scholar 

  • Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221:169–184

    Article  PubMed  Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    Article  PubMed  Google Scholar 

  • Gil-da-Costa R, Braun A, Lopes M, Hauser MD, Carson RE, Herscovitch P, Martin A (2004) Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque. Proc Natl Acad Sci U S A 101:17516–17521

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil-da-Costa R, Martin A, Lopes MA, Muñoz M, Fritz JB, Braun AR (2006) Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nat Neurosci 9:1064–1070

    Article  PubMed  Google Scholar 

  • Goldman PS, Nauta WJ (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122:393–413

    Article  PubMed  Google Scholar 

  • Goldman PS, Rosvold HE. (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 27:291–304

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1990) Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Prog Brain Res 85:325–335; discussion 335–336

    Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS, Funahashi S, Bruce CJ (1999) Neocortical memory circuits. Cold Spring Harb Symp Quant Biol 55:1025–1038

    Article  Google Scholar 

  • Hage SR, Nieder A (2015) Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex. J Neurosci 35:7030–7040

    Article  PubMed  Google Scholar 

  • Herculano-Houzel S, Kaas JH, de Oliveira-Souza R (2016) Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J Comp Neurol 524:448–455

    Article  PubMed  Google Scholar 

  • Hubel DH (1988) Eye, Brain and Vision. Scientific American Library, New York

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59

    Article  PubMed  Google Scholar 

  • Jacobsen CF (1938). Studies of cerebral function in primates. Comp Psychol Monogr 13:1–68

    Google Scholar 

  • Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625

    Article  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (1999) “What” and “where” processing in auditory cortex. Nat Neurosci 2:1045–1047

    Article  PubMed  Google Scholar 

  • Kaas JH, Stepniewska I (2016) Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J Comp Neurol 524:595–608

    Article  PubMed  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347

    PubMed  Google Scholar 

  • Kumar V, Croxson PL, Simonyan K (2016) Structural organization of the laryngeal motor cortical network and its implication for evolution of speech production. J Neurosci 36:4170–4181

    Article  PubMed  PubMed Central  Google Scholar 

  • Lettvin JY, Maturana HR, McCullough WS, Pitts WH (1968) What the frog’s eye tells the frog’s brain. In: Corning WC (ed), The Mind: Biological Approaches to its Functions. Martin Balaban, Boston, p 233–258.

    Google Scholar 

  • Margulies DS, Petrides M (2016) Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production. J Neurosci 33:16846–16852

    Article  Google Scholar 

  • Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M, Jefferies E, Smallwood J (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A 113:12574-12579

    Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1959) Evidence that cut optic nerve fibers in a frog regenerate to their proper places in the tectum. Science 130:1709–1710

    Article  PubMed  Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43 (Suppl):129–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishkin M, Pribram KH (1955) Analysis of the effects of frontal lesions in monkey. I. Variations of delayed alternation. J Comp Physiol Psychol 48:492–495

    Article  PubMed  Google Scholar 

  • Mishkin M, Pribram KH (1956) Analysis of the effects of frontal lesions in monkey. II. Variations of delayed response. J Comp Physiol Psychol 49:36–40

    Article  PubMed  Google Scholar 

  • Neubert FX, Mars RB, Thomas AG, Sallet J, Rushworth MF (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:700–713

    Article  PubMed  Google Scholar 

  • Owen R (1837) The Hunterian Lectures in Comparative Anatomy. University of Chicago Press, Chicago (1992)

    Google Scholar 

  • Petrides M (2014) Neuroanatomy of Language Regions of the Human Brain. Academic Press, New York

    Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 273:52–66

    Article  PubMed  Google Scholar 

  • Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PloS Biol 7:e1000170

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrides M, Cadoret G, Mackey S (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435:1235–1238

    Article  PubMed  Google Scholar 

  • Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57

    Article  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991a) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310:475–506

    Article  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991b) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991c) Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J Comp Neurol 310:507–549

    Article  PubMed  Google Scholar 

  • Pribram KH, Mishkin M (1956) Analysis of the effects of frontal lesions in monkey. III. Object alternation. J Comp Physiol Psychol 49:41–45

    Article  PubMed  Google Scholar 

  • Purves D (1988) Body and Brain. A Trophic Theory of Neural Connections. Harvard Press, Cambridge

    Google Scholar 

  • Quiroga RQ (2012) Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 13:587–597

    PubMed  Google Scholar 

  • Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    Article  PubMed  Google Scholar 

  • Quiroga RQ, Kreiman G, Koch C, Fried I (2008) Sparse but not “grandmother-cell” coding in the medial temporal lobe. Trends Cogn Sci 12:87–91

    Article  PubMed  Google Scholar 

  • Rauschecker JP (2012) Ventral and dorsal streams in the evolution of speech and language. Front Evol Neurosci 4:7

    Google Scholar 

  • Rilling JK (2014) Comparative primate neurobiology and the evolution of brain language systems. Curr Opin Neurobiol 28:10–14

    Article  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM (2012) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski LM (2007) Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. Cereb Cortex 17 (Suppl 1):i61–i69

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski LM (2012) Integration of faces and vocalizations in ventral prefrontal cortex: implications for the evolution of audiovisual speech. Proc Natl Acad Sci U S A 109 (Suppl 1):10717–10724

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski LM, Diehl MM (2011) Neurons responsive to face-view in the primate ventrolateral prefrontal cortex. Neuroscience 189:223–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski LM, Goldman-Rakic PS (2002) An auditory domain in primate prefrontal cortex. Nat Neurosci 5:15–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski LM, Bates JF, Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157

    Article  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski LM, Tian B, Fritz JB, Mishkin M, Goldman-Rakic PS, Rauschecker JP (2000) Reply to “What”, “where” and “how” in auditory “cortex”. Nat Neurosci 3:966

    Article  PubMed  Google Scholar 

  • Rupke N (1994) Richard Owen. Victorian Naturalist. Yale University Press, New Haven

    Google Scholar 

  • Scarf D, Boy K, Uber Reinert A, Devine J, Güntürkün O, Colombo M (2016) Orthographic processing in pigeons (Columba livia). Proc Natl Acad Sci U S A 113:11272-11276

    Google Scholar 

  • Schomers MR, Garagnani M, Pulvermüller F (2017) Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex. J Neurosci 37:3045-3055

    Google Scholar 

  • Scott BH, Mishkin M (2016) Auditory short-term memory in the primate auditory cortex. Brain Res 1640:264–277

    Article  PubMed  Google Scholar 

  • Scott BH, Mishkin M, Yin P (2012) Monkeys have a limited form of short-term memory in audition. Proc Natl Acad Sci U S A. 109:12237–12241

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24: 49–65, 111–125

    Article  PubMed  Google Scholar 

  • Skeide MA, Friederici AD (2016) The ontogeny of the cortical language network. Nat Rev Neurosci. 17:323–332

    Article  PubMed  Google Scholar 

  • Sliwa J, Planté A, Duhamel JR, Wirth S (2016) Independent Neuronal Representation of Facial and Vocal Identity in the Monkey Hippocampus and Inferotemporal Cortex. Cereb Cortex 26:950–966

    Article  PubMed  Google Scholar 

  • Spillmann L (2014) Receptive fields of visual neurons: the early years. Perception 43:1145–1176

    Article  PubMed  Google Scholar 

  • Stout D, Chaminade T (2012) Stone tools, language and the brain in human evolution. Philos Trans R Soc Lond B Biol Sci 367:75–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugihara T, Diltz MD, Averbeck BB, Romanski LM (2006) Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. J Neurosci 26:11138–11147

    Article  PubMed  PubMed Central  Google Scholar 

  • Sur M, Pallas SL, Roe AW (1990) Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends Neurosci 13:227–233

    Article  PubMed  Google Scholar 

  • Tremblay P, Dick AS (2016) Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang 162:60–71

    Article  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  PubMed  Google Scholar 

  • Viskontas IV, Quiroga RQ, Fried I (2009) Human medial temporal lobe neurons respond preferentially to personally relevant images. Proc Natl Acad Sci U S A 106(50):21329–21334

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson B, Slater H, Kikuchi Y, Milne AE, Marslen-Wilson WD, Smith K, Petkov CI (2013) Auditory artificial grammar learning in macaque and marmoset monkeys. J Neurosci 33:18825–18835

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson B, Kikuchi Y, Sun L, Hunter D, Dick F, Smith K, Thiele A, Griffiths TD, Marslen-Wilson WD, Petkov CI (2015) Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nat Commun 6:8901

    Google Scholar 

  • Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci U S A 111:E5214–E5223

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81

    Article  PubMed  Google Scholar 

  • York GK 3rd, Steinberg DA (2011) Hughlings Jackson’s neurological ideas. Brain 134:3106–3113

    Article  PubMed  Google Scholar 

  • Zeki S (1993) A Vision of the Brain. Blackwell Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Aboitiz, F. (2017). Monkey Brain, Human Brain. In: A Brain for Speech. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-54060-7_7

Download citation

Publish with us

Policies and ethics