Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Sperm Nucleoproteins

  • Chapter
  • First Online:
Sperm Chromatin
  • 2091 Accesses

  • 15 Citations

Abstract

Protamines are the most abundant nuclear proteins packaging the ­mammalian male genome in the sperm nucleus. The main proposed functions of these proteins are condensation and streamlining of the sperm cell, protection of the genetic message, and contribution to the epigenetic organisation of the paternal genome. Different studies have demonstrated the presence of an altered expression of protamines in some infertile patients and a link to decreased DNA integrity. However, in addition to protamines, about 5–15% of the male sperm genome is also complexed with histones and histone variants. Furthermore, present proteomic approaches based on mass spectrometry are also identifying additional chromatin-associated proteins. Of importance, it has been demonstrated that there is a differential distribution of genes into the histone- and protamine-associated regions of the sperm nucleus, which supports the idea of an epigenetic marking of the sperm nucleoprotein, with potential relevance in early embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miescher F. Das Protamin – Eine neue organische Basis aus denSamenf – den des Rheinlachses. Ber Dtsch Chem Ges. 1874;7:376.

    Google Scholar 

  2. Dahm R. Friedrich Miescher and the discovery of DNA. Dev Biol. 2005;278(2):274–88.

    PubMed  CAS  Google Scholar 

  3. Kossel A. The protamines and histones. London: Longmans Green; 1928.

    Google Scholar 

  4. Felix K. Protamines. Adv Protein Chem. 1960;15:1–56.

    PubMed  CAS  Google Scholar 

  5. Dixon GH, Smith M. Nucleic acids and protamine in salmon testes. Prog Nucleic Acid Res Mol Biol. 1968;8:9–34.

    PubMed  CAS  Google Scholar 

  6. Oliva R, Dixon GH. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol. 1991;40:25–94.

    PubMed  CAS  Google Scholar 

  7. Bloch DP. A catalog of sperm histones. Genetics. 1969;61(1):Suppl:93-111.

    Google Scholar 

  8. Ando T, Yamasaki M, Suzuki K. Protamines. Isolation, characterization, structure and function. Mol Biol Biochem Biophys. 1973;12:1–114.

    PubMed  CAS  Google Scholar 

  9. Calvin HI. Comparative analysis of the nuclear basic proteins in rat, human, guinea pig, mouse and rabbit spermatozoa. Biochim Biophys Acta. 1976;434(2):377–89.

    PubMed  CAS  Google Scholar 

  10. Subirana JA. Proceedings of the forth international symposium of spermatogly. In: Andre J, editor. The sperm cell. The Netherlands: Martinus Nijhoff Pub; 1983. p. 197–213.

    Google Scholar 

  11. Mezquita C. Chromatin composition, structure and function in spermatogenesis. Revis Biol Celular. 1985;5:V–XIV, 1–124.

    Google Scholar 

  12. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5.

    PubMed  CAS  Google Scholar 

  13. Ammer H, Henschen A, Lee CH. Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol Chem Hoppe Seyler. 1986;367(6):515–22.

    PubMed  CAS  Google Scholar 

  14. de Yebra L, Ballesca JL, Vanrell JA, Bassas L, Oliva R. Complete selective absence of protamine P2 in humans. J Biol Chem. 1993;268(14):10553–7.

    PubMed  Google Scholar 

  15. de Yebra L, Oliva R. Rapid analysis of mammalian sperm nuclear proteins. Anal Biochem. 1993;209(1):201–3.

    PubMed  Google Scholar 

  16. de Yebra L, Ballesca JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–9.

    PubMed  Google Scholar 

  17. Bench G, Corzett MH, De Yebra L, Oliva R, Balhorn R. Protein and DNA contents in sperm from an infertile human male possessing protamine defects that vary over time. Mol Reprod Dev. 1998;50(3):345–53.

    PubMed  CAS  Google Scholar 

  18. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27.

    PubMed  CAS  Google Scholar 

  19. Aoki VW, Carrell DT. Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl. 2003;5(4):315–24.

    PubMed  CAS  Google Scholar 

  20. Mengual L, Ballesca JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl. 2003;24(3):438–47.

    PubMed  Google Scholar 

  21. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

    PubMed  CAS  Google Scholar 

  22. Gusse M, Sautiere P, Belaiche D, et al. Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta. 1986;884(1):124–34.

    PubMed  CAS  Google Scholar 

  23. McKay DJ, Renaux BS, Dixon GH. Human sperm protamines. Amino-acid sequences of two forms of protamine P2. Eur J Biochem. 1986;156(1):5–8.

    PubMed  CAS  Google Scholar 

  24. Balhorn R, Corzett M, Mazrimas J, Stanker LH, Wyrobek A. High-performance liquid chromatographic separation and partial characterization of human protamines 1, 2, and 3. Biotechnol Appl Biochem. 1987;9(1):82–8.

    PubMed  CAS  Google Scholar 

  25. Bellve AR, McKay DJ, Renaux BS, Dixon GH. Purification and characterization of mouse protamines P1 and P2. Amino acid sequence of P2. Biochemistry. 1988;27(8):2890–7.

    PubMed  CAS  Google Scholar 

  26. Chauviere M, Martinage A, Debarle M, Sautiere P, Chevaillier P. Molecular characterization of six intermediate proteins in the processing of mouse protamine P2 precursor. Eur J Biochem. 1992;204(2):759–65.

    PubMed  CAS  Google Scholar 

  27. Yoshii T, Kuji N, Komatsu S, et al. Fine resolution of human sperm nucleoproteins by two-dimensional electrophoresis. Mol Hum Reprod. 2005;11(9):677–81.

    PubMed  CAS  Google Scholar 

  28. Belaiche D, Loir M, Kruggle W, Sautiere P. Isolation and characterization of two protamines St1 and St2 from stallion spermatozoa, and amino-acid sequence of the major protamine St1. Biochim Biophys Acta. 1987;913(2):145–9.

    PubMed  CAS  Google Scholar 

  29. Bower PA, Yelick PC, Hecht NB. Both P1 and P2 protamine genes are expressed in mouse, hamster, and rat. Biol Reprod. 1987;37(2):479–88.

    PubMed  CAS  Google Scholar 

  30. Bianchi F, Rousseaux-Prevost R, Sautiere P, Rousseaux J. P2 protamines from human sperm are zinc -finger proteins with one CYS2/HIS2 motif. Biochem Biophys Res Commun. 1992;182(2):540–7.

    PubMed  CAS  Google Scholar 

  31. Oliva R, Mezquita J, Mezquita C, Dixon GH. Haploid expression of the rooster protamine mRNA in the postmeiotic stages of spermatogenesis. Dev Biol. 1988;125(2):332–40.

    PubMed  CAS  Google Scholar 

  32. Oliva R, Bazett-Jones DP, Locklear L, Dixon GH. Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res. 1990;18(9):2739–47.

    PubMed  CAS  Google Scholar 

  33. Queralt R, de Fabregues-Boixar O, Adroer R, et al. Direct sequencing of the human protamine P1 gene and application in forensic medicine. J Forensic Sci. 1993;38(6):1491–501.

    PubMed  CAS  Google Scholar 

  34. Queralt R, Oliva R. Identification of conserved potential regulatory sequences of the protamine-encoding P1 genes from ten different mammals. Gene. 1993;133(2):197–204.

    PubMed  CAS  Google Scholar 

  35. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    PubMed  CAS  Google Scholar 

  36. Martins RP, Krawetz SA. Nuclear organization of the protamine locus. Soc Reprod Fertil Suppl. 2007;64:1–12.

    PubMed  CAS  Google Scholar 

  37. Yelick PC, Balhorn R, Johnson PA, et al. Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not. Mol Cell Biol. 1987;7(6):2173–9.

    PubMed  CAS  Google Scholar 

  38. Sautiere P, Martinage A, Belaiche D, Arkhis A, Chevaillier P. Comparison of the amino acid sequences of human protamines HP2 and HP3 and of intermediate basic nuclear proteins HPS1 and HPS2. Structural evidence that HPS1 and HPS2 are pro-protamines. J Biol Chem. 1988;263(23):11059–62.

    PubMed  CAS  Google Scholar 

  39. Green GR, Balhorn R, Poccia DL, Hecht NB. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev. 1994;37(3):255–63. doi:10.1002/mrd.1080370303.

    PubMed  CAS  Google Scholar 

  40. Queralt R, Adroer R, Oliva R, Winkfein RJ, Retief JD, Dixon GH. Evolution of protamine P1 genes in mammals. J Mol Evol. 1995;40(6):601–7.

    PubMed  CAS  Google Scholar 

  41. Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P. Nuclear basic proteins in spermiogenesis. Biochimie. 1998;80(2):117–28.

    PubMed  CAS  Google Scholar 

  42. Martinage A, Arkhis A, Alimi E, Sautiere P, Chevaillier P. Molecular characterization of nuclear basic protein HPI1, a putative precursor of human sperm protamines HP2 and HP3. Eur J Biochem. 1990;191(2):449–51.

    PubMed  CAS  Google Scholar 

  43. Arkhis A, Martinage A, Sautiere P, Chevaillier P. Molecular structure of human protamine P4 (HP4), a minor basic protein of human sperm nuclei. Eur J Biochem. 1991;200(2):387–92.

    PubMed  CAS  Google Scholar 

  44. Alimi E, Martinage A, Arkhis A, Belaiche D, Sautiere P, Chevaillier P. Amino acid sequence of the human intermediate basic protein 2 (HPI2) from sperm nuclei. Structural relationship with protamine P2. Eur J Biochem. 1993;214(2):445–50.

    PubMed  CAS  Google Scholar 

  45. Oliva R, Dixon GH. Vertebrate protamine gene evolution I. Sequence alignments and gene structure. J Mol Evol. 1990;30(4):333–46.

    PubMed  CAS  Google Scholar 

  46. Retief JD, Winkfein RJ, Dixon GH, et al. Evolution of protamine P1 genes in primates. J Mol Evol. 1993;37(4):426–34.

    PubMed  CAS  Google Scholar 

  47. Oliva R. Sequence, evolution and transcriptional regulation of mammalian P1 type protamines. In: Jamieson BGM, editor. Advances in spermatozoal phylogeny and taxonomy. Paris: Museum National d’Histoire Naturelle; 1995.

    Google Scholar 

  48. Lewis JD, Song Y, de Jong ME, Bagha SM, Ausio J. A walk though vertebrate and invertebrate protamines. Chromosoma. 2003;111(8):473–82.

    PubMed  Google Scholar 

  49. Saowaros W, Panyim S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia. 1979;35(2):191–2.

    PubMed  CAS  Google Scholar 

  50. Balhorn R, Corzett M, Mazrimas JA. Formation of intraprotamine disulfides in vitro. Arch Biochem Biophys. 1992;296(2):384–93.

    PubMed  CAS  Google Scholar 

  51. Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088–95.

    PubMed  CAS  Google Scholar 

  52. Bjorndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16(1):23–9.

    PubMed  Google Scholar 

  53. Eirin-Lopez JM, Frehlick LJ, Ausio J. Protamines, in the footsteps of linker histone evolution. J Biol Chem. 2006;281(1):1–4.

    PubMed  CAS  Google Scholar 

  54. Eirin-Lopez JM, Ausio J. Origin and evolution of chromosomal sperm proteins. Bioessays. 2009;31(10):1062–70.

    PubMed  CAS  Google Scholar 

  55. Rooney AP, Zhang J. Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive Darwinian selection? Mol Biol Evol. 1999;16(5):706–10.

    PubMed  CAS  Google Scholar 

  56. Clark AG, Civetta A. Evolutionary biology. Protamine wars. Nature. 2000;403(6767):261, 263.

    Google Scholar 

  57. Wyckoff GJ, Wang W, Wu CI. Rapid evolution of male reproductive genes in the descent of man. Nature. 2000;403(6767):304–9.

    PubMed  CAS  Google Scholar 

  58. Rooney AP, Zhang J, Nei M. An unusual form of purifying selection in a sperm protein. Mol Biol Evol. 2000;17(2):278–83.

    PubMed  CAS  Google Scholar 

  59. Ohtsuki K, Nishikawa Y, Saito H, Munakata H, Kato T. DNA-binding sperm proteins with oligo-arginine clusters function as potent activators for egg CK-II. FEBS Lett. 1996;378(2):115–20.

    PubMed  CAS  Google Scholar 

  60. Torgerson DG, Kulathinal RJ, Singh RS. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol Biol Evol. 2002;19(11):1973–80.

    PubMed  CAS  Google Scholar 

  61. Lewis JD, Ausio J. Protamine-like proteins: evidence for a novel chromatin structure. Biochem Cell Biol. 2002;80(3):353–61.

    PubMed  CAS  Google Scholar 

  62. Poccia D. Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. Int Rev Cytol. 1986;105:1–65.

    PubMed  CAS  Google Scholar 

  63. Hecht NB. Gene expression during male germ cell development. In: Desjardins C, Ewing Ll, editors. Cell and molecular biology of the testis. New York: Oxford University Press; 1993.

    Google Scholar 

  64. Grootegoed JA, Siep M, Baarends WM. Molecular and cellular mechanisms in spermatogenesis. Baillières Best Pract Res Clin Endocrinol Metab. 2000;14(3):331–43.

    PubMed  CAS  Google Scholar 

  65. Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science. 2002;296(5576):2176–8.

    PubMed  CAS  Google Scholar 

  66. Dadoune JP. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech. 2003;61(1):56–75.

    PubMed  CAS  Google Scholar 

  67. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.

    PubMed  Google Scholar 

  68. Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol. 2004;67(4):271–84.

    PubMed  CAS  Google Scholar 

  69. Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-specific epigenetic information. Gene. 2005;345(2):139–53.

    PubMed  CAS  Google Scholar 

  70. Puwaravutipanich T, Panyim S. The nuclear basic proteins of human testes and ejaculated spermatozoa. Exp Cell Res. 1975;90(1):153–8.

    PubMed  CAS  Google Scholar 

  71. Oliva R, Vidal S, Mezquita C. Cellular content and biosynthesis of polyamines during rooster spermatogenesis. Biochem J. 1982;208(2):269–73.

    PubMed  CAS  Google Scholar 

  72. Oliva R, Mezquita C. Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids. Nucleic Acids Res. 1982;10(24):8049–59.

    PubMed  CAS  Google Scholar 

  73. Fuentes-Mascorro G, Serrano H, Rosado A. Sperm chromatin. Arch Androl. 2000;45(3):215–25.

    PubMed  CAS  Google Scholar 

  74. Braun RE. Packaging paternal chromosomes with protamine. Nat Genet. 2001;28(1):10–2.

    PubMed  CAS  Google Scholar 

  75. Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004;271(17):3459–69.

    PubMed  CAS  Google Scholar 

  76. Prigent Y, Muller S, Dadoune JP. Immunoelectron microscopical distribution of histones H2B and H3 and protamines during human spermiogenesis. Mol Hum Reprod. 1996;2(12):929–35.

    PubMed  CAS  Google Scholar 

  77. Prigent Y, Troalen F, Dadoune JP. Immunoelectron microscopic visualization of intermediate basic proteins HPI1 and HPI2 in human spermatids and spermatozoa. Reprod Nutr Dev. 1998;38(4):417–27.

    PubMed  CAS  Google Scholar 

  78. Churikov D, Zalenskaya IA, Zalensky AO. Male germline-specific histones in mouse and man. Cytogenet Genome Res. 2004;105(2–4):203–14.

    PubMed  CAS  Google Scholar 

  79. Tanaka H, Iguchi N, Isotani A, et al. HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol. 2005;25(16):7107–19.

    PubMed  CAS  Google Scholar 

  80. Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature. 2005;437(7063):1386–90.

    PubMed  CAS  Google Scholar 

  81. Ishibashi T, Li A, Eirín-López JM, Zhao M, Missiaen K, Abbott DW, et al. H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res. 2010;8(6):1780–9.

    Google Scholar 

  82. Candido EP, Dixon GH. Trout testis cells. 3. Acetylation of histones in different cell types from developing trout testis. J Biol Chem. 1972;247(17):5506–10.

    PubMed  CAS  Google Scholar 

  83. Grimes Jr SR, Henderson N. Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res. 1984;152(1):91–7.

    PubMed  CAS  Google Scholar 

  84. Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev. 1992;31(3):170–81.

    PubMed  CAS  Google Scholar 

  85. Hazzouri M, Rousseaux S, Mongelard F, et al. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev. 2000;55(3):307–15.

    PubMed  CAS  Google Scholar 

  86. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–8.

    PubMed  CAS  Google Scholar 

  87. Oliva R, Mezquita C. Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry. 1986;25(21):6508–11.

    PubMed  CAS  Google Scholar 

  88. Oliva R, Bazett-Jones D, Mezquita C, Dixon GH. Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem. 1987;262(35):17016–25.

    PubMed  CAS  Google Scholar 

  89. Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000;103(2):263–71.

    PubMed  CAS  Google Scholar 

  90. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    PubMed  CAS  Google Scholar 

  91. Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92.

    PubMed  CAS  Google Scholar 

  92. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14(14):R546–51.

    PubMed  CAS  Google Scholar 

  93. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434(7033):583–9.

    PubMed  CAS  Google Scholar 

  94. Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics. 2009;36(2):75–88.

    PubMed  CAS  Google Scholar 

  95. Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 2003;23(15):5354–65.

    PubMed  CAS  Google Scholar 

  96. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–90.

    PubMed  CAS  Google Scholar 

  97. Faure AK, Pivot-Pajot C, Kerjean A, et al. Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Mol Hum Reprod. 2003;9(12):757–63.

    PubMed  CAS  Google Scholar 

  98. Chiva M, Mezquita C. Quantitative changes of high mobility group non-histone chromosomal proteins HMG1 and HMG2 during rooster spermatogenesis. FEBS Lett. 1983;162(2):324–8.

    PubMed  CAS  Google Scholar 

  99. Corominas M, Mezquita C. Poly(ADP-ribosylation) at successive stages of rooster spermatogenesis. Levels of polymeric ADP-ribose in vivo and poly(ADP-ribose) polymerase activity and turnover of ADP-ribosyl residues in vitro. J Biol Chem. 1985;260(30):16269–73.

    PubMed  CAS  Google Scholar 

  100. Agell N, Mezquita C. Cellular content of ubiquitin and formation of ubiquitin conjugates during chicken spermatogenesis. Biochem J. 1988;250(3):883–9.

    PubMed  CAS  Google Scholar 

  101. Roca J, Mezquita C. DNA topoisomerase II activity in nonreplicating, transcriptionally inactive, chicken late spermatids. EMBO J. 1989;8(6):1855–60.

    PubMed  CAS  Google Scholar 

  102. Meyer-Ficca ML, Lonchar J, Credidio C, et al. Disruption of poly(ADP-ribose) homeostasis affects spermiogenesis and sperm chromatin integrity in mice. Biol Reprod. 2009;81(1):46–55.

    PubMed  CAS  Google Scholar 

  103. Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem. 2010;285(4):2758–70.

    PubMed  CAS  Google Scholar 

  104. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell. 2010;18(3):371–84.

    PubMed  CAS  Google Scholar 

  105. Okada Y, Tateishi K, Zhang Y. Histone demethylase JHDM2A is involved in male infertility and obesity. J Androl. 2010;31(1):75–8.

    PubMed  CAS  Google Scholar 

  106. Kierszenbaum AL. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Mol Reprod Dev. 2001;58(4):357–8.

    PubMed  CAS  Google Scholar 

  107. Ingles CJ, Dixon GH. Phosphorylation of protamine during spermatogenesis in trout testis. Proc Natl Acad Sci USA. 1967;58(3):1011–8.

    PubMed  CAS  Google Scholar 

  108. Marushige Y, Marushige K. Phosphorylation of sperm histone during spermiogenesis in mammals. Biochim Biophys Acta. 1978;518(3):440–9.

    PubMed  CAS  Google Scholar 

  109. Papoutsopoulou S, Nikolakaki E, Chalepakis G, Kruft V, Chevaillier P, Giannakouros T. SR protein-specific kinase 1 is highly expressed in testis and phosphorylates protamine 1. Nucleic Acids Res. 1999;27(14):2972–80.

    PubMed  CAS  Google Scholar 

  110. Prieto MC, Maki AH, Balhorn R. Analysis of DNA-protamine interactions by optical detection of magnetic resonance. Biochemistry. 1997;36(39):11944–51.

    PubMed  CAS  Google Scholar 

  111. Brewer L, Corzett M, Lau EY, Balhorn R. Dynamics of protamine 1 binding to single DNA molecules. J Biol Chem. 2003;278(43):42403–8.

    PubMed  CAS  Google Scholar 

  112. Brewer LR, Corzett M, Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule. Science. 1999;286(5437):120–3.

    PubMed  CAS  Google Scholar 

  113. Balhorn R, Corzett M, Mazrimas J, Watkins B. Identification of bull protamine disulfides. Biochemistry. 1991;30(1):175–81.

    PubMed  CAS  Google Scholar 

  114. Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93(2):298–305.

    PubMed  CAS  Google Scholar 

  115. Hud NV, Allen MJ, Downing KH, Lee J, Balhorn R. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun. 1993;193(3):1347–54.

    PubMed  CAS  Google Scholar 

  116. Allen MJ, Lee C, Lee IV JD, et al. Atomic force microscopy of mammalian sperm chromatin. Chromosoma. 1993;102(9):623–30.

    PubMed  CAS  Google Scholar 

  117. Allen MJ, Bradbury EM, Balhorn R. AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res. 1997;25(11):2221–6.

    PubMed  CAS  Google Scholar 

  118. Raukas E, Mikelsaar RH. Are there molecules of nucleoprotamine? Bioessays. 1999;21(5):440–8.

    PubMed  CAS  Google Scholar 

  119. Biegeleisen K. The probable structure of the protamine-DNA complex. J Theor Biol. 2006;241(3):533–40.

    PubMed  CAS  Google Scholar 

  120. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    PubMed  Google Scholar 

  121. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;236(4804):962–4.

    PubMed  CAS  Google Scholar 

  122. Zalensky AO, Siino JS, Gineitis AA, et al. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. Molecular cloning and characterization. J Biol Chem. 2002;277(45):43474–80.

    PubMed  CAS  Google Scholar 

  123. Singleton S, Zalensky A, Doncel GF, Morshedi M, Zalenskaya IA. Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod. 2007;22(3):743–50.

    PubMed  CAS  Google Scholar 

  124. Shaman JA, Yamauchi Y, Ward WS. Function of the sperm nuclear matrix. Arch Androl. 2007;53(3):135–40.

    PubMed  CAS  Google Scholar 

  125. Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma. 1995;103(9):577–90.

    PubMed  CAS  Google Scholar 

  126. Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol. 1998;18(6):3350–6.

    PubMed  CAS  Google Scholar 

  127. Zalenskaya IA, Bradbury EM, Zalensky AO. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun. 2000;279(1):213–8.

    PubMed  CAS  Google Scholar 

  128. Zalenskaya IA, Zalensky AO. Telomeres in mammalian male germline cells. Int Rev Cytol. 2002;218:37–67.

    PubMed  CAS  Google Scholar 

  129. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278(32):29471–7.

    PubMed  CAS  Google Scholar 

  130. Li Y, Lalancette C, Miller D, Krawetz SA. Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl. 2008;10(4):535–41.

    PubMed  CAS  Google Scholar 

  131. Arpanahi A, Brinkworth M, Iles D, et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19(8):1338–49.

    PubMed  CAS  Google Scholar 

  132. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    PubMed  CAS  Google Scholar 

  133. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139(2):287–301.

    PubMed  CAS  Google Scholar 

  134. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.

    PubMed  CAS  Google Scholar 

  135. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):154.

    PubMed  CAS  Google Scholar 

  136. Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH. The centrosome and early embryogenesis: clinical insights. Reprod Biomed Online. 2008;16(4):485–91.

    PubMed  Google Scholar 

  137. van der Heijden GW, Ramos L, Baart EB, et al. Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol. 2008;8:34.

    PubMed  Google Scholar 

  138. Biermann K, Steger K. Epigenetics in male germ cells. J Androl. 2007;28(4):466–80.

    PubMed  CAS  Google Scholar 

  139. Wu TF, Chu DS. Sperm chromatin: fertile grounds for proteomic discovery of clinical tools. Mol Cell Proteomics. 2008;7(10):1876–86.

    PubMed  CAS  Google Scholar 

  140. Yamauchi Y, Shaman JA, Ward WS. Topoisomerase II-mediated breaks in spermatozoa cause the specific degradation of paternal DNA in fertilized oocytes. Biol Reprod. 2007;76(4):666–72.

    PubMed  CAS  Google Scholar 

  141. Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006;6(15):4356–69.

    PubMed  CAS  Google Scholar 

  142. de Mateo S, Martinez-Heredia J, Estanyol JM, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7(23):4264–77.

    PubMed  Google Scholar 

  143. Rawe VY, Diaz ES, Abdelmassih R, et al. The role of sperm proteasomes during sperm aster formation and early zygote development: implications for fertilization failure in humans. Hum Reprod. 2008;23(3):573–80.

    PubMed  CAS  Google Scholar 

  144. Baker MA, Reeves G, Hetherington L, Muller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1:524–32.

    PubMed  CAS  Google Scholar 

  145. Codrington AM, Hales BF, Robaire B. Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. Hum Reprod. 2007;22(5):1431–42.

    PubMed  CAS  Google Scholar 

  146. Lefievre L, Chen Y, Conner SJ, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7(17):3066–84.

    PubMed  CAS  Google Scholar 

  147. Martinez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballesca JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2009;23(4):783–91.

    Google Scholar 

  148. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2:19.

    PubMed  Google Scholar 

  149. Baker MA, Hetherington L, Reeves GM, Aitken RJ. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008;8(8):1720–30.

    PubMed  CAS  Google Scholar 

  150. Baker MA, Hetherington L, Reeves G, Muller J, Aitken RJ. The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008;8(11):2312–21.

    PubMed  CAS  Google Scholar 

  151. Oliva R, Martinez-Heredia J, Estanyol JM. Proteomics in the study of the sperm cell composition, differentiation and function. Syst Biol Reprod Med. 2008;54(1):23–36.

    PubMed  CAS  Google Scholar 

  152. Oliva R, de Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9(4):1004–17.

    PubMed  CAS  Google Scholar 

  153. Rousseaux S, Reynoird N, Escoffier E, Thevenon J, Caron C, Khochbin S. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online. 2008;16(4):492–503.

    PubMed  CAS  Google Scholar 

  154. Silvestroni L, Frajese G, Fabrizio M. Histones instead of protamines in terminal germ cells of infertile, oligospermic men. Fertil Steril. 1976;27(12):1428–37.

    PubMed  CAS  Google Scholar 

  155. Chevaillier P, Mauro N, Feneux D, Jouannet P, David G. Anomalous protein complement of sperm nuclei in some infertile men. Lancet. 1987;2(8562):806–7.

    PubMed  CAS  Google Scholar 

  156. Lescoat D, Colleu D, Boujard D, Le Lannou D. Electrophoretic characteristics of nuclear proteins from human spermatozoa. Arch Androl. 1988;20(1):35–40.

    PubMed  CAS  Google Scholar 

  157. Bach O, Glander HJ, Scholz G, Schwarz J. Electrophoretic patterns of spermatozoal nucleoproteins (NP) in fertile men and infertility patients and comparison with NP of somatic cells. Andrologia. 1990;22(3):217–24.

    PubMed  CAS  Google Scholar 

  158. Blanchard Y, Lescoat D, Le Lannou D. Anomalous distribution of nuclear basic proteins in round-headed human spermatozoa. Andrologia. 1990;22(6):549–55.

    PubMed  CAS  Google Scholar 

  159. Belokopytova IA, Kostyleva EI, Tomilin AN, Vorob’ev VI. Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev. 1993;34(1):53–7.

    PubMed  CAS  Google Scholar 

  160. Chen S, Cao J, Fei RR, Mao QZ, Li HZ. Analysis of protamine content in patients with asthenozoospermia. Zhonghua Nan Ke Xue. 2005;11(8):587–9. 593.

    PubMed  CAS  Google Scholar 

  161. Torregrosa N, Dominguez-Fandos D, Camejo MI, et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod. 2006;21(8):2084–9.

    PubMed  CAS  Google Scholar 

  162. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3):313–27.

    PubMed  CAS  Google Scholar 

  163. Zini A, Gabriel MS, Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril. 2007;87(1):217–9.

    PubMed  Google Scholar 

  164. Carrell DT. Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reprod Biomed Online. 2008;16(4):474–84.

    PubMed  CAS  Google Scholar 

  165. Carrell DT, Emery BR. Hammoud S. Int J Androl: The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome; 2008.

    Google Scholar 

  166. Stanker LH, McKeown C, Balhorn R, et al. Immunological evidence for a P2 protamine precursor in mature rat sperm. Mol Reprod Dev. 1992;33(4):481–8.

    PubMed  CAS  Google Scholar 

  167. Debarle M, Martinage A, Sautiere P, Chevaillier P. Persistence of protamine precursors in mature sperm nuclei of the mouse. Mol Reprod Dev. 1995;40(1):84–90.

    PubMed  CAS  Google Scholar 

  168. Colleu D, Lescoat D, Gouranton J. Nuclear maturity of human spermatozoa selected by swim-up or by Percoll gradient centrifugation procedures. Fertil Steril. 1996;65(1):160–4.

    PubMed  CAS  Google Scholar 

  169. Hammoud S, Liu L, Carrell DT. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia. 2009;41(2):88–94.

    PubMed  CAS  Google Scholar 

  170. Love CC, Kenney RM. Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod. 1999;60(3):615–20.

    PubMed  CAS  Google Scholar 

  171. Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21(5):739–46.

    PubMed  CAS  Google Scholar 

  172. Iuchi Y, Kaneko T, Matsuki S, Sasagawa I, Fujii J. Concerted changes in the YB2/RYB-a protein and protamine 2 messenger RNA in the mouse testis under heat stress. Biol Reprod. 2003;68(1):129–35.

    PubMed  CAS  Google Scholar 

  173. Bizarro D, Manicardi GC, Bianchi PG, Bianchi U, Mariethoz E, Sakkas D. In-situ competition between protamine and fluorochromes for sperm DNA. Mol Hum Reprod. 1998;4:127–32.

    Google Scholar 

  174. Manicardi GC, Bianchi PG, Pantano S, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52(4):864–7.

    PubMed  CAS  Google Scholar 

  175. Nasr-Esfahani MH, Razavi S, Mardani M. Relation between different human sperm nuclear maturity tests and in vitro fertilization. J Assist Reprod Genet. 2001;18(4):219–25.

    PubMed  CAS  Google Scholar 

  176. Lolis D, Georgiou I, Syrrou M, Zikopoulos K, Konstantelli M, Messinis I. Chromomycin A3-staining as an indicator of protamine deficiency and fertilization. Int J Androl. 1996;19(1):23–7.

    PubMed  CAS  Google Scholar 

  177. Franken DR, Franken CJ, de la Guerre H, de Villiers A. Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia. 1999;31(6):361–6.

    PubMed  CAS  Google Scholar 

  178. Razavi S, Nasr-Esfahani MH, Mardani M, Mafi A, Moghdam A. Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia. 2003;35(4):238–43.

    PubMed  CAS  Google Scholar 

  179. Nasr-Esfahani MH, Razavi S, Mozdarani H, Mardani M, Azvagi H. Relationship between protamine deficiency with fertilization rate and incidence of sperm premature chromosomal condensation post-ICSI. Andrologia. 2004;36(3):95–100.

    PubMed  CAS  Google Scholar 

  180. Nasr-Esfahani MH, Salehi M, Razavi S, et al. Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online. 2004;9(6):652–8.

    PubMed  CAS  Google Scholar 

  181. Nasr-Esfahani MH, Salehi M, Razavi S, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online. 2005;11(2):198–205.

    PubMed  CAS  Google Scholar 

  182. Colleu D, Lescoat D, Boujard D, Le Lannou D. Human spermatozoal nuclear maturity in normozoospermia and asthenozoospermia. Arch Androl. 1988;21(3):155–62.

    PubMed  CAS  Google Scholar 

  183. Auger J, Mesbah M, Huber C, Dadoune JP. Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl. 1990;13(6):452–62.

    PubMed  CAS  Google Scholar 

  184. Bustos-Obregon E, Leiva S. Chromatin packing in normal and teratozoospermic human ejaculated spermatozoa. Andrologia. 1983;15(5):468–78.

    PubMed  CAS  Google Scholar 

  185. Le Lannou D, Colleu D, Boujard D, Le Couteux A, Lescoat D, Segalen J. Effect of duration of abstinence on maturity of human spermatozoa nucleus. Arch Androl. 1986;17(1):35–8.

    PubMed  Google Scholar 

  186. Jager S. Sperm nuclear stability and male infertility. Arch Androl. 1990;25(3):253–9.

    PubMed  CAS  Google Scholar 

  187. Filatov MV, Semenova EV, Vorob’eva OA, Leont’eva OA, Drobchenko EA. Relationship between abnormal sperm chromatin packing and IVF results. Mol Hum Reprod. 1999;5(9):825–30.

    PubMed  CAS  Google Scholar 

  188. Katayose H, Yanagida K, Hashimoto S, Yamada H, Sato A. Use of diamide-acridine orange fluorescence staining to detect aberrant protamination of human-ejaculated sperm nuclei. Fertil Steril. 2003;79 Suppl 1:670–6.

    PubMed  Google Scholar 

  189. Rufas O, Fisch B, Seligman J, Tadir Y, Ovadia J, Shalgi R. Thiol status in human sperm. Mol Reprod Dev. 1991;29(3):282–8.

    PubMed  CAS  Google Scholar 

  190. Lewis SE, Sterling ES, Young IS, Thompson W. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril. 1997;67(1):142–7.

    PubMed  CAS  Google Scholar 

  191. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.

    PubMed  CAS  Google Scholar 

  192. Zini A, Kamal KM, Phang D. Free thiols in human spermatozoa: correlation with sperm DNA integrity. Urology. 2001;58(1):80–4.

    PubMed  CAS  Google Scholar 

  193. Ramos L, van der Heijden GW, Derijck A, et al. Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod. 2008;23(2):259–70.

    PubMed  CAS  Google Scholar 

  194. Omu AE, Al-Azemi MK, Kehinde EO, Anim JT, Oriowo MA, Mathew TC. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–16.

    PubMed  CAS  Google Scholar 

  195. Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004;71(4):1220–9.

    PubMed  CAS  Google Scholar 

  196. Conrad M, Moreno SG, Sinowatz F, et al. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol. 2005;25(17):7637–44.

    PubMed  CAS  Google Scholar 

  197. Zubkova EV, Wade M, Robaire B. Changes in spermatozoal chromatin packaging and susceptibility to oxidative challenge during aging. Fertil Steril. 2005;84 Suppl 2:1191–8.

    PubMed  CAS  Google Scholar 

  198. Suganuma R, Yanagimachi R, Meistrich ML. Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod. 2005;20(11):3101–8.

    PubMed  CAS  Google Scholar 

  199. Szczygiel MA, Ward WS. Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage. Biol Reprod. 2002;67(5):1532–7.

    PubMed  CAS  Google Scholar 

  200. Sotolongo B, Lino E, Ward WS. Ability of hamster spermatozoa to digest their own DNA. Biol Reprod. 2003;69(6):2029–35.

    PubMed  CAS  Google Scholar 

  201. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.

    PubMed  CAS  Google Scholar 

  202. Alvarez JG, Sharma RK, Ollero M, et al. Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril. 2002;78(2):319–29.

    PubMed  Google Scholar 

  203. Evenson DP, Darzynkiewicz Z, Melamed MR. Comparison of human and mouse sperm chromatin structure by flow cytometry. Chromosoma. 1980;78(2):225–38.

    PubMed  CAS  Google Scholar 

  204. Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology. 2006;65(5):979–91.

    PubMed  CAS  Google Scholar 

  205. Angelopoulou R, Plastira K, Msaouel P. Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA. Reprod Biol Endocrinol. 2007;5:36.

    PubMed  Google Scholar 

  206. Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54(3):111–25.

    PubMed  CAS  Google Scholar 

  207. Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol. 2009;590:377–402.

    PubMed  CAS  Google Scholar 

  208. Barratt CL, Aitken RJ, Bjorndahl L, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod. 2010;25(4):824–38.

    PubMed  Google Scholar 

  209. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    PubMed  CAS  Google Scholar 

  210. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.

    PubMed  CAS  Google Scholar 

  211. Nili HA, Mozdarani H, Aleyasin A. Correlation of sperm DNA damage with protamine deficiency in Iranian subfertile men. Reprod Biomed Online. 2009;18(4):479–85.

    PubMed  Google Scholar 

  212. Tavalaee M, Razavi S. Nasr-Esfahani MH. Fertil Steril: Influence of sperm chromatin anomalies on assisted reproductive technology outcome; 2008.

    Google Scholar 

  213. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.

    PubMed  CAS  Google Scholar 

  214. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.

    PubMed  CAS  Google Scholar 

  215. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    PubMed  CAS  Google Scholar 

  216. Suzuki M, Crozatier C, Yoshikawa K, Toshiaki M, Yoshikawa Y. Protamine-induced DNA compaction but not aggregation shows effective radioprotection against double-strand breaks. Chem Phys Lett. 2009;480:113–7.

    CAS  Google Scholar 

  217. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19(3):611–5.

    PubMed  CAS  Google Scholar 

  218. Cho C, Jung-Ha H, Willis WD, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211–7.

    PubMed  CAS  Google Scholar 

  219. Greco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20(1):226–30. doi:10.1093/humrep/deh590.

    PubMed  Google Scholar 

  220. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    PubMed  CAS  Google Scholar 

  221. Leduc F, Nkoma GB, Boissonneault G. Spermi­ogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med. 2008;54(1):3–10.

    PubMed  CAS  Google Scholar 

  222. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.

    PubMed  CAS  Google Scholar 

  223. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    PubMed  CAS  Google Scholar 

  224. Dominguez-Fandos D, Camejo MI, Ballesca JL, Oliva R. Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytom A. 2007;71(12):1011–8.

    Google Scholar 

  225. de Mateo S, Gazquez C, Guimera M, et al. Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2008;91(3):715–22.

    PubMed  Google Scholar 

  226. Tarozzi N, Nadalini M, Stronati A, et al. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18(4):486–95.

    PubMed  Google Scholar 

  227. Chiamchanya C, Kaewnoonual N, Visutakul P, Manochantr S, Chaiya J. Comparative study of the effects of three semen preparation media on semen analysis, DNA damage and protamine deficiency, and the correlation between DNA integrity and sperm parameters. Asian J Androl. 2010;12(2):271–7.

    PubMed  Google Scholar 

  228. Khara KK, Vlad M, Griffiths M, Kennedy CR. Human protamines and male infertility. J Assist Reprod Genet. 1997;14(5):282–90.

    PubMed  CAS  Google Scholar 

  229. Carrell DT, Emery BR, Liu L. Characterization of aneuploidy rates, protamine levels, ultrastructure, and functional ability of round-headed sperm from two siblings and implications for intracytoplasmic sperm injection. Fertil Steril. 1999;71(3):511–6.

    PubMed  CAS  Google Scholar 

  230. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    PubMed  CAS  Google Scholar 

  231. Steger K, Fink L, Failing K, et al. Decreased protamine-1 transcript levels in testes from infertile men. Mol Hum Reprod. 2003;9(6):331–6.

    PubMed  CAS  Google Scholar 

  232. Mitchell V, Steger K, Marchetti C, Herbaut JC, Devos P, Rigot JM. Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod. 2005;11(5):373–9.

    PubMed  CAS  Google Scholar 

  233. Ahmadi A, Ng SC. Destruction of protamine in human sperm inhibits sperm binding and penetration in the zona-free hamster penetration test but increases sperm head decondensation and male pronuclear formation in the hamster-ICSI assay. J Assist Reprod Genet. 1999;16(3):128–32.

    PubMed  CAS  Google Scholar 

  234. Ahmadi A, Ng SC. Influence of sperm plasma membrane destruction on human sperm head decondensation and pronuclear formation. Arch Androl. 1999;42(1):1–7.

    PubMed  CAS  Google Scholar 

  235. Becker S, Soffer Y, Lewin LM, Yogev L, Shochat L, Golan R. Spermiogenesis defects in human: detection of transition proteins in semen from some infertile men. Andrologia. 2008;40(4):203–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Ministerio de Educación y Ciencia (BFU2009-07118), fondos FEDER to RO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Oliva MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oliva, R., Castillo, J. (2011). Sperm Nucleoproteins. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Keywords

Publish with us

Policies and ethics