Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Skeletal Muscle Mitochondria: The Aerobic Gate?

  • Conference paper
Oxygen Transfer from Atmosphere to Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 227))

  • 231 Accesses

  • 9 Citations

Abstract

At an animal’s maximum aerobic capacity (\(\rm\dot{v}\)O2max), the O2 flowing through the respiratory system is consumed by a functionally exclusive sink, skeletal muscle mitochondria. Thus, O2 consumption will never exceed the muscles demand. If the system is ideally designed, structures upstream to the skeletal muscle O2 sink must be built to insure adequate O2 delivery to the working muscle. There are a number of structure-function solutions available to supply the demanded to the muscle; these have been found to vary, often ontogenetically, with hypoxia, training, etc. But there is one relationship that is invariant: Total O2 uptake can be predicted by the total (active) skeletal muscle mitochondrial volume. In aerobic and sedentary animals, across a range of body sizes, maximum (in vivo) mitochondrial O2 consumption is constant among mammals (at approximately 2000 O2 molecules per square micron of inner mitochondrial membrane per second). Because the volume of mitochondria is one of the most plastic of all respiratory structures, we interpret this relationship as suggesting that skeletal muscle mitochondria alone sets the demand for O2 and, thus, the volume of skeletal muscle mitochondria dictates an animal’s maximum aeorbic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, P. and B. Saltin (1985) Maximal perfusion of skeletal muscle in man. J. Physiol. (London) 366:233–249.

    Google Scholar 

  • Buick, F.J., N. Gledhill, A.B. Froese, L. Spriet and E.C. Meyes (1980). Effect of induced erythrocythemia on aerobic work capacity. J. Appl. Physiol. 48:636–642.

    PubMed  CAS  Google Scholar 

  • Celsing, F., J. Nystrom, P. Pihlstedt, B. Werner and B. Ekblom (1986). Effect of long-term anemia and retransfusion on central circulation during exercise. J. Appl. Physiol. 4:1358–1362.

    Google Scholar 

  • Celsing, F., J. Svedenhag, P. Pihlstedt and B. Ekblom (1987). Effects of anemia and stepwise-induced polycythaemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol. Scand. 129:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, E.F., M.K. Hemmert and A.R. Coggan (1986). Effects of detraining on cardiovascular responses to exercise: role of blood volume. J. Appl. Physiol. 60:95–99.

    Article  PubMed  CAS  Google Scholar 

  • di Prampero, P.E. (1985) Metabolic and circulatory limitations to VO2max at the whole animal level. J. Exp. Biol. 115:319–331.

    PubMed  Google Scholar 

  • Ekblom, B. (1986) Factors determining maximal aerobic power. Acta Physiol. Scand. 128:15–19.

    Google Scholar 

  • Ekblom, B., A.N. Goldbarg and B. Gullbring (1972). Response to exercise after blood loss and reinfusion. J. Appl. Physiol. 33:175–180.

    PubMed  CAS  Google Scholar 

  • Ekblom, B. and L. Hermansen (1968). Cardiac output in athletes. J. Appl. Physiol. 25:619–625.

    PubMed  CAS  Google Scholar 

  • Ekblom, B., R. Hout, E.M. Stein and A.T. Thorstensson (1975). Effect of changes in arterial oxygen content on circulation and physical performance. J. Appl. Physiol. 39:71–75.

    PubMed  CAS  Google Scholar 

  • Ekblom, B., G. Wilson and P.-O. Astrand (1976). Central circulation during exercise after venesection and reinfusion of red blood cells. J. Appl. Physiol. 40:379–383.

    PubMed  CAS  Google Scholar 

  • Farrell, P.A., A.B. Gustafson, T.L. Garthwaite, R.K. Kalkhoff, A.W. Cowley, Jr. and W.P. Morgan (1986). Influence of endogenous opioids on the response of selected hormones to exercise in humans. J. Appl. Physiol. 61:1051–1057.

    PubMed  CAS  Google Scholar 

  • Hagberg, J.M., W.K. Allen, D.R. Seals, B.F. Hurley, A.E. Ali and J.O. Holloszy (1985). A hemodynamic comparison of young and older endurance athletes during exercise. J. Appl. Physiol. 58:2041–2046.

    PubMed  CAS  Google Scholar 

  • Holmgren, A. and P.-O. Astrand (1966). DL and the dimensions and functional capacities of the 0 transport system in humans. J. Appl. Physiol. 21:1463–1470.

    PubMed  CAS  Google Scholar 

  • Hoppeler, H., H. Howald, K.E. Conley, S.L. Lindstedt, H. Classsen, P. Vock and E.R. Weibel (1985) Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 59:320–327.

    Google Scholar 

  • Hoppeler, H., S.L. Lindstedt, E. Uhlmann, A. Niesel, L.M. Cruz-Orive and E.R. Weibel (1984). Oxygen consumption and the composition of skeletal muscle tissue after training and inactivation in the European woodmouse (Apodemus sylvaticus). J. Comp. Physiol. B. 155:51–61.

    Google Scholar 

  • Hoppeler, H. and S.L. Lindstedt (1985) Malleability of skeletal muscle tissue in overcoming limitations: Structural elements. J. Exp. Biol. 115:355–364.

    PubMed  CAS  Google Scholar 

  • Kanstrup, I.-L. and B. Ekblom (1982). Acute hypervolemia, cardiac performance and aerobic power during exercise. J. Appl. Physiol. 52:1186- 1192.

    PubMed  CAS  Google Scholar 

  • Kanstrup, I.-L. and B. Ekblom (1984). Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med. Sci. Sport Exercise 16:256–263.

    CAS  Google Scholar 

  • Lindstedt, S.L., H. Hoppeler, K.M. Bard and H.A. Thronson, Jr. (1985a) Estimate of muscle shortening rate during locomotion. Am. J. Physiol. 249:R699-R703.

    PubMed  CAS  Google Scholar 

  • Lindstedt, S.L., J.H. Jones, H. Hoppeler and H.A. Thronson, Jr. (1985b). Determinants of structure/function relations in the respiratory system: sufficiency vs. limitation. Physiologist 28:342 (abstract).

    Google Scholar 

  • Lindstedt, S.L. and J.H. Jones (1987). Syramorphosis: the concept of optimal designed. In, M. Feder, A.F. Bennett, W. Burrgren and R. Huey (eds.), New Directions in Physiological Ecology. Cambridge University Press. (In press).

    Google Scholar 

  • Lindstedt, S.L., D.J. Wells, J.H. Jones, H. Hoppeler and H.A. Thronson, Jr. (1988). Limitations to aerobic performance in mammals: interaction of structure and demand. Int. J. Sports Med. In press.

    Google Scholar 

  • Olez, O., H. Howald, P.E. diPrampero, H. Hoppeler, H. Claassen, R. Jerri, A. Buehlmann, G. Ferretti, J-C. Brickner, A. Veicsteinas, M. Gussoni and P. Cerretelli (1986). Physiological profile of world-class high- altitude climbers. J. Appl. Physiol. 60:1734–1742.

    Google Scholar 

  • Robertson, R.J., R. Gilcher, R.F. Metz, G.S. Skrinar, T.G. Allison, H.T. Bahnsen, R.A. Abbott, R. Becker and J.E. Panel (1982). Effect of induced erythrocythemia on hypoxia tolerane during physical exercise. J. Appl. Physiol. 53:490–495.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, R.J., R. Gilcher, K.F. Metz, C.J. Caspersen, T.G. Allison, R.A. Abbott, G.S. Skrinar, J.R. Krause and P.A. Nixon (1984). Hemoglobin concentration and aerobic work capacity in women following induced erythrocytemia. J. Appl. Physiol. 568–575.

    Google Scholar 

  • Saltin, B. (1985) Hemodynamic adaptations to exercise. Am. J. Physiol. 55:42D-47D.

    CAS  Google Scholar 

  • Saltin, B. and P.D. Gollnick (1983) Skeletal muscle adaptability: significance for metabolism and performance. Handbook of Physiology Skeletal muscle. L.D. Peachy, R.H. Adrian and S.R. Geiger (eds.), Williams & Wilkins, Baltimore, pp. 555–631.

    Google Scholar 

  • Spriet, L.L., N. Gledhill, A.B. Froese and D.L. Wilkes (1986) Effect of graded erythrocytemia on cardiovascular and metabolic responses to exercise. J. Appl. Physiol. 61:1942–1948.

    PubMed  CAS  Google Scholar 

  • Svedenhag, J., A. Martinsson, B. Ekblom and P. Hjemdahl (1986). Altered cardiovascular responsiveness to adrenaline in endurance-trained subjects. Acta. Physiol. Scand. 126:539–550.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C.R. (1987). Structural and Functional limits to oxidative metabolism: Insight from scaling. Annu. Rev. Physiol. 49:135–146.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C.R. and E.R. Weibel (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.M., J.A. Stone, A.D. Ginsburg and P. Hamilton (1982). Oxygen transport during exercise following blood reinfusion. J. Appl. Physiol. 1213–1219.

    Google Scholar 

  • Tipton, C.M. (1986) Determinants of \(\rm\dot{v}\) O2max: Insights gained from non-human species. Acta Physiol. Scand. 128:33–43.

    Article  Google Scholar 

  • Withers, R.T., W.M. Sherman, J.M. Miler and D.L. Costill (1981) Specificity of the anaerobic threshold in endurance trained cyclists and runners. Eur. J. Appl. Physiol. 47:93–104.

    Article  CAS  Google Scholar 

  • Woodson, R.D., R.E. Wills and C. Lenfant (1978). Effect of acute and established anemia on transport at rest, submaximal and maximal workload. J. Appl. Physiol. 44:36–43.

    PubMed  CAS  Google Scholar 

  • Verzar, F. (1912) The gaseous metabolism of striated muscle in warm-blooded animals. J. Physiol. (Lond.) 44:243–258.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Lindstedt, S.L., Wells, D.J. (1988). Skeletal Muscle Mitochondria: The Aerobic Gate?. In: Gonzalez, N.C., Fedde, M.R. (eds) Oxygen Transfer from Atmosphere to Tissues. Advances in Experimental Medicine and Biology, vol 227. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5481-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5481-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5483-3

  • Online ISBN: 978-1-4684-5481-9

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics