Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

The Nature of Statistical Learning Theory

  • Book
  • © 1995

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook GBP 56.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability.

Similar content being viewed by others

Table of contents (7 chapters)

Reviews

"This interesting book helps a reader to understand the interconnections between various streams in the empirical modeling realm and may be recommended to any reader who feels lost in modern terminology." V.V. Fedorov, Oak Ridge National Laboratory, USA

Authors and Affiliations

  • AT&T Bell Laboratories, Holmdel, USA

    Vladimir N. Vapnik

Accessibility Information

PDF accessibility summary

This PDF is not accessible. It is based on scanned pages and does not support features such as screen reader compatibility or described non-text content (images, graphs etc). However, it likely supports searchable and selectable text based on OCR (Optical Character Recognition). Users with accessibility needs may not be able to use this content effectively. Please contact us at [email protected] if you require assistance or an alternative format.

Bibliographic Information

Keywords

Publish with us