Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Infrared Thermography for the Detection of Injury in Sports Medicine

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

In this chapter, we will describe how infrared thermography (IRT) can help us to prevent and monitor injuries, always based on the use of standardised protocols. We will explain some of the main physiological aspects and will enumerate the main applications, with examples gathered from our research and professional experience with top sport athletes and teams. To summarize, IRT can help us to reduce injury incidence and to increase the performance in a non-invasive, fast and objective way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernández Cuevas I, Gómez Carmon PM, Sillero Quintana M, et al (2010) Economic costs estimation of soccer injuries in first and second spanish division professional teams. In: 15th annual congress of the European college of sport sciences ECSS

    Google Scholar 

  2. Gabbett TJ, Jenkins DG (2011) Relationship between training load and injury in professional rugby league players. J Sci Med Sport 14:204–209. doi:10.1016/j.jsams.2010.12.002

    Article  Google Scholar 

  3. Gabbett TJ (2016) The training—injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med 50:273–280. doi:10.1136/bjsports-2015-095788

    Article  Google Scholar 

  4. Bandeira F, de Moura MAM, de Souza MA et al (2012) Pode a termografia auxiliar no diagnóstico de lesões musculares em atletas de futebol? Rev Bras Med Esporte 18:246–251

    Article  Google Scholar 

  5. Bandeira F, Neves EB, de Moura MAM, Nohama P (2014) A termografia no apoio ao diagnóstico de lesão muscular no esporte. Rev Bras Med Esporte 20:59–64

    Article  Google Scholar 

  6. Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. doi:10.3390/s141121950

    Article  Google Scholar 

  7. BenEliyahu DJ (1990) Infrared Thermography in the diagnosis and management of sports injuries: a clinical study and literature review. Chiropr Sports Med 4:41–53

    Google Scholar 

  8. Costello J, Stewart IB, Selfe J et al (2013) Use of thermal imaging in sports medicine research: a short report: short article. Int SportMed J 14:94–98

    Google Scholar 

  9. Tauchmannova H, Gabrhel J, Cibak M (1993) Thermographic findings in different sports, their value in the prevention of soft tissue injuries. Themol Osterr 3:91–95

    Google Scholar 

  10. Čoh M, Širok B (2007) Use of the thermovision method in sport training. Facta Univ-Ser Phys Educ Sport 5:85–94

    Google Scholar 

  11. Kenny GP, Jay O (2007) Sex differences in postexercise esophageal and muscle tissue temperature response. Am J Physiol Regul Integr Comp Physiol 292:R1632–1640. doi:10.1152/ajpregu.00638.2006

    Article  Google Scholar 

  12. Fernández Cuevas I (2012) Effect of endurance, speed and strength training on skin temperature measured by infrared thermography = Efecto del entrenamiento de resistencia, velocidad y fuerza en la temperatura de la piel a través de la termografía infrarroja. Universidad Politécnica de Madrid

    Google Scholar 

  13. Frim J, Livingstone SD, Reed LD et al (1990) Body composition and skin temperature variation. J Appl Physiol Bethesda Md 68:540–543

    Google Scholar 

  14. Ring EFJ (1990) Quantitative thermal imaging. Clin Phys Physiol Meas 11:87. doi:10.1088/0143-0815/11/4A/310

    Article  Google Scholar 

  15. Niu HH, Lui PW, Hu JS et al (2001) Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed 64:459–468

    Google Scholar 

  16. Uematsu S, Edwin DH, Jankel WR et al (1988) Quantification of thermal asymmetry: part 1: normal values and reproducibility. J Neurosurg 69:552–555

    Article  Google Scholar 

  17. Piñonosa Cano S, Sillero Quintana M, Milanovic L et al (2013) Thermal evolution of lower limbs during a rehabilitation process after anterior cruciate ligament surgery. Kinesiol Zagreb Croat 45:121–129

    Google Scholar 

  18. Piñonosa Cano S (2016) Use of infrared thermography as a tool to monitor skin temperature along the recovery process of an anterior cruciate ligament surgery. Universidad Politécnica de Madrid

    Google Scholar 

  19. Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys Technol 71:28–55. doi:10.1016/j.infrared.2015.02.007

    Article  ADS  Google Scholar 

  20. Carmona Gómez P (2012) Influencia de la información termográfica infrarroja en el protocolo de prevención de lesiones de un equipo de fútbol profesional español. (Influence of infrared thermographic information in the injury prevention protocol of a professional spanish footbal team). Universidad Politécnica de Madrid

    Google Scholar 

  21. Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715

    Article  Google Scholar 

  22. Ammer K (2006) Influence of imaging and object conditions on temperature readings from medical infrared images. Pol J Environ Stud (Submitt)

    Google Scholar 

  23. Sillero-Quintana M, Fernández Cuevas I, Arnaiz Lastras J, Bouzas Marins JC (2015) TERMOINEF group: protocol for thermographic assessment in humans

    Google Scholar 

  24. IACT (2002) Thermology guidelines. standards and protocolos in clinical thermography imaging

    Google Scholar 

  25. ISO (2004) Ergonomics—evaluation of thermal strain by physiological measurements. ISO 9886

    Google Scholar 

  26. Schwartz RG (2006) Guidelines for neuromusculoskeletal thermography. Thermol Int 16:5–9

    Google Scholar 

  27. Ammer K (2015) Do we need reference data of local skin temperatures? Thermol Int 25:45–47

    Google Scholar 

  28. Ammer K (2003) Need for standardisation of measurements in thermal imaging. Thermogr Lasers Med Akad Cent Graf-Mark Lodart SA Lodz 13–18

    Google Scholar 

  29. Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144

    Google Scholar 

  30. Ammer K, Ring EFJ (2006) Standard procedures for infrared imaging in medicine. In: Biomedical engineering handbook. CRC Press, ‎Boca Raton

    Google Scholar 

  31. Mercer JB, Ring EFJ (2009) Fever screening and infrared thermal imaging: concerns and guidelines. Thermol Int 19:67–69

    Google Scholar 

  32. Plassmann P, Ring EFJ, Jones CD (2006) Quality assurance of thermal imaging systems in medicine. Thermol Int 16:10–15

    Google Scholar 

  33. Ring EFJ, Ammer K (2012) Infrared thermal imaging in medicine. Physiol Meas 33:R33–46. doi:10.1088/0967-3334/33/3/R33

    Article  ADS  Google Scholar 

  34. Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14

    Google Scholar 

  35. Ring EFJ, Ammer K, Wiecek B et al (2007) Quality assurance for thermal imaging systems in medicine. Thermol Int 17:103–106

    Google Scholar 

  36. Hart J, Owens EF (2004) Stability of paraspinal thermal patterns during acclimation. J Manipulative Physiol Ther 27:109–117. doi:10.1016/j.jmpt.2003.12.006

    Article  Google Scholar 

  37. Vardasca R, Gabriel J (2016) Is the low cost thermal camera FLIR C2 suitable for medical thermal measurements? Thermol Int 26

    Google Scholar 

  38. Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi:10.1088/0967-3334/29/4/007

    Article  Google Scholar 

  39. Fernandez Cuevas I, Marins JC, Gomez Carmona PM et al (2012) Reliability and reproductibility of skin temperature of overweight subjects by an infrared thermograpy software designed for human beings. Thermol Int 22:130–137

    Google Scholar 

  40. Fournet D, Redortier B, Havenith G (2012) A method for whole-body skin temperature mapping in humans. Thermol Int 22:157–159

    Google Scholar 

  41. Varajão J, Cunha M, Bjørn-Andersen N et al (2014) Segmentation algorithms for thermal images. Procedia Technol 16:1560–1569. doi:10.1016/j.protcy.2014.10.178

    Article  Google Scholar 

  42. Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686

    Article  Google Scholar 

  43. Kellogg DL, Pérgola P (2000) Skin responses to exercise and training. In: Garrett WE, Kirkendall DT (eds) Exercise and sport science. Lippincott-Raven Publishers, Philadelphia, pp 239–250

    Google Scholar 

  44. Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612. doi:10.4065/78.5.603

    Article  Google Scholar 

  45. Wallin BG (1990) Neural control of human skin blood flow. J Auton Nerv Syst 30(Suppl):S185–190

    Article  Google Scholar 

  46. Blatteis CM (1998) Physiology and pathophysiology of temperature regulation. World Scientific, Singapore

    Book  Google Scholar 

  47. Wilmore JH, Costill DL, Kenney WL (2008) Physiology of sport and exercise. Human Kinetics

    Google Scholar 

  48. Incropera FP (1999) Introduction to heat transfer: with brief fluid. Wiley, New York

    Google Scholar 

  49. Anbar M (1987) Computerized thermography. Int J Technol Assess Health Care 3:613–621

    Article  Google Scholar 

  50. Al-Nakhli HH, Petrofsky JS, Laymon MS, Berk LS (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. J Vis Exp. doi:10.3791/3551

    Google Scholar 

  51. Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C (2012) The application of medical infrared thermography in sports medicine. Ultrasound 10:2

    Google Scholar 

  52. Zaproudina N, Ming Z, Hänninen OO (2006) Plantar infrared thermography measurements and low back pain intensity. J Manipulative Physiol Ther 29:219–223

    Article  Google Scholar 

  53. Vardasca R (2008) Symmetry of temperature distribution in the upper and lower extremities. Thermol Int 18:154–155

    Google Scholar 

  54. Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60

    Google Scholar 

  55. Pichot C (2001) Aplicación de la termografía en el dolor lumbar crónico. Rev Soc Esp Dolor 8:43–47

    Google Scholar 

  56. Feldman F, Nickoloff EL (1984) Normal thermographic standards for the cervical spine and upper extremities. Skeletal Radiol 12:235–249. doi:10.1007/BF00349505

    Article  Google Scholar 

  57. Garagiola U, Giani E (1990) Use of telethermography in the management of sports injuries. Sports Med Auckl NZ 10:267–272

    Article  Google Scholar 

  58. de Weerd L, Mercer JB, Weum S (2011) Dynamic infrared thermography. Clin Plast Surg 38:277–292. doi:10.1016/j.cps.2011.03.013

    Article  Google Scholar 

  59. Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628

    Article  Google Scholar 

  60. Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385

    Article  Google Scholar 

  61. Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71

    Google Scholar 

  62. Abate M, Di Carlo L, Di Romualdo S et al (2009) Postural adjustment in experimental leg length difference evaluated by means of thermal infrared imaging. Physiol Meas 31:35

    Article  Google Scholar 

  63. Koprowski R (2015) Automatic analysis of the trunk thermal images from healthy subjects and patients with faulty posture. Comput Biol Med 62:110–118. doi:10.1016/j.compbiomed.2015.04.017

    Article  Google Scholar 

  64. Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215

    Google Scholar 

  65. Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi:10.1007/s10439-012-0718-x

    Article  Google Scholar 

  66. Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi:10.1016/j.jtherbio.2014.12.005

    Article  Google Scholar 

  67. Sillero Quintana M, Conde Pascual E, Gómez Carmona PM et al (2012) Effect of yoga and swimming on body temperature of pregnant women. Thermol Int 22:143–149

    Google Scholar 

  68. Hadžić V, Širok B, Malneršič A, Čoh M, Can infrared thermography be used to monitor fatigue during exercise? A case study. J Sport Health Sci. doi:10.1016/j.jshs.2015.08.002

  69. Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermography as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228

    Article  Google Scholar 

  70. Bertucci W, Arfaoui A, Janson L, Polidori G (2013) Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: a preliminary study. Comput Methods Biomech Biomed Engin 16(Suppl 1):114–115. doi:10.1080/10255842.2013.815902

    Article  Google Scholar 

  71. Lewis GF, Gatto RG, Porges SW (2011) A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology 48:877–887. doi:10.1111/j.1469-8986.2010.01167.x

    Article  Google Scholar 

  72. Dotti F, Ferri A, Moncalero M, Colonna M (2016) Thermo-physiological comfort of soft-shell back protectors under controlled environmental conditions. Appl Ergon 56:144–152. doi:10.1016/j.apergo.2016.04.002

    Article  Google Scholar 

  73. Fournet D, Redortier B, Havenith G (2015) Can body-mapped garments improve thermal comfort for sport in the cold? Extreme Physiol Med 4:A74

    Article  Google Scholar 

  74. Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi:10.1016/j.jtherbio.2013.04.005

    Article  Google Scholar 

  75. Salces JN, Quintana MS (2012) Epidemiología de las lesiones en el fútbol profesional español en la temporada 2008–2009. Arch Med Deporte 750–766

    Google Scholar 

  76. Ekstrand J, Hägglund M, Waldén M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232

    Article  Google Scholar 

  77. Noya Salces J, Gómez-Carmona PM, Gracia-Marco L et al (2014) Epidemiology of injuries in first division Spanish football. J Sports Sci 32:1263–1270

    Article  Google Scholar 

  78. Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. doi:10.1016/S1888-7546(14)70053-x

    Article  Google Scholar 

  79. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med Auckl NZ 43:313–338. doi:10.1007/s40279-013-0029-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Fernández-Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fernández-Cuevas, I., Arnáiz Lastras, J., Escamilla Galindo, V., Gómez Carmona, P. (2017). Infrared Thermography for the Detection of Injury in Sports Medicine. In: Priego Quesada, J. (eds) Application of Infrared Thermography in Sports Science. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-47410-6_4

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics