Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Ket qualitative features of solutions exhibiting strong discontinuities in rate-independent inelastic solids are identified and exploited in the design of a new class of finite element approximations. The analysis shows that the softening law must be re-interpreted in a distributional sense for the continuum solutions to make mathematical sense and provides a precise physical interpretation to the softening modulus. These results are verified by numerical simulations employing a regularized discontinuous finite element method which circumvent the strong mesh-dependence exhibited by conventional methods, without resorting to viscosity or introducing additional ad-hoc parameters. The analysis is extended to a new class of anisotropic rate-independent damage models for brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzellotti, G.; Giaquinta, M. (1982): On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body in static equilibrium. J. Math. Pures et Appliquées 61, 219–244

    Google Scholar 

  • Bazant, Z. P. (1986): Mechanics of distributed cracking. Appl. Mech. Res. 5, 675–705

    Google Scholar 

  • Bazant, Z. P.; Belytschko, T. (1985): Wave propagation in a strain-softening bar: exact solution. J. Eng. Mech. Div. ASCE. 111, 381–389

    Google Scholar 

  • Belytschko, T.; Fish, J.; Engelmann, B. E. (1988): A finite element with embedded localization zones. Comput. Meth. Appl. Mech. Eng. 70, 59–89

    Google Scholar 

  • Crisfield, M. A.; Wills, J. (1988): Solution strategies and softening materials. Comput. Meth. Appl. Mech. Eng. 66, 267–289

    Google Scholar 

  • De Borst, R. (1987): Computation of post-bifurcation and post-failure behavior of strain-softening solids. Comput. Struct. 2, 211–224

    Google Scholar 

  • Demengel, F. (1989): Compactness theorems of spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Arch. Rat. Mech. Anal. 105, 123–161

    Google Scholar 

  • Duvaut, G.; Lions, J. L. (1976): Inequalities in mechanics and physics. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Hadamard, J. (1903): Lecons sur la Propagation des Ondes et les Equations de l'Hydrodynamique, Chap. VI. Paros: Hermann

    Google Scholar 

  • Hill, R. (1950): The mathematical theory of plasticity. Oxford University Press

  • Hill, R. (1962): Acceleration waves in solids. J. Mech. Phys. Solids 6, 1–10

    Google Scholar 

  • Hillerborg, A. (1985): Numerical methods to simulate softening and fracture of concrete. In: Sih, G. C.; DiTommaso, A. (eds): Fracture mechanics of contrete: structural application and numerical calculation, 141–170

  • Hillerborg, A.; Modeer, M.; Petersson, P. (1976): Analysis of crack formation and crack growth in concrete by means fo fracture mechanics and finite elements. Cement and concrete research 6, 773–782

    Google Scholar 

  • Johnson, C. (1976): Existence theorems for plasticity problems. J. Math. Pures et Appliquées 55, 431–444

    Google Scholar 

  • Johnson, C. (1978): On plasticity with hardening. J. Math. Anal. Appl. 62, 325–336

    Google Scholar 

  • Johnson, C.; Hansbo, P. (1992): Adaptive finite element methods for small strain elastoplasticity. In: Proceedings IUTAM conference. Springer Verlag (in press)

  • Johnson, W. (1987): Henri tresca as the originator of adiabatic heat lines. Intern. J. Mech. Sci. 29, 301–310

    Google Scholar 

  • Knowles, J. (1979): On the dissipation associated with weak shocks in finite elasticity. J. Elasticity 9, 131–158

    Google Scholar 

  • Katchanov, L. M. (1958): Time of the rupture process under creep conditions. IVZ Akad. Nauk S.S.R., Otd Tech Nauk 8, 26–31

    Google Scholar 

  • Koiter, W. T. (1966): General theorems for elastic-plastic solids. In: Progress in Solid Mechanics, Chapter IV, vol. 1, 67–221

  • Kohn, R.; Temam, R. (1983): Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10, 1–35.

    Google Scholar 

  • Lesaint, P. (1979): Sur les Systèmes Hyperboliques, Thèse d'Etat

  • LeVeque, R. J. (1990): Numerical methods of conservation laws. Basel, Birkhauser Verlag

    Google Scholar 

  • Mandel, J. (1966): Conditions de Stabilité et Postulat de Drucker. In: Kravtchenko, J.; Sirieys, P. M. (eds): Rheology and soil mechanics, IUTAM Symposium Grenoble 1964, 58–68

  • Matthies, H.; Strang, G.; Christiansen, E. (1979): The saddle point of a differential program. In: Glowinski, Robin, Zienkiewicz (eds). Energy methods in finite element analysis, 309–318. London: J. Wiley and Sons

    Google Scholar 

  • Matthies, H. (1979): Existence theorems in thermo-plasticity. J. Mec. 18, 695–712

    Google Scholar 

  • Needleman, A. (1987): Material rate dependent and mesh sensitivity in localization problems. Comp. Appl. Mech. Eng. 67, 68–85.

    Google Scholar 

  • Needleman, A.; Tvergard, V. (1992): Analysis of plastic localization in metals. Appl. Mech. Rev. 3–18

  • Oliver, J. (1989): A consistent characteristic length for smeared cracking models. Int. J. Num. Meth. Eng. 28, 461–474.

    Google Scholar 

  • Ortiz, M.; Leroy, Y.; Needleman, A. (1987): A finite element method for localization failure analysis. Comp. Meth. Appl. Mech. Eng. 61, 189–214

    Google Scholar 

  • Ortiz, M. (1985): A constitutive theory for the inelastic behavior of concrete. Mech. Mat. 4, 67–93.

    Google Scholar 

  • Ortiz, M.; Quigley, J. J. (1991): Adaptive mesh refinement in strain localization. Com. Meth. Appl. Mech. Eng. 90, 781–804

    Google Scholar 

  • Ottosen, N. (1985): Thermodynamic consequences of Strain-softening in tension. J. Eng. Mech. Div. ASCE, 112, 1152–1164

    Google Scholar 

  • Pietrszczak, St.; Mróz (1981): Finite element analysis of deformation of strain-softening materials. Int. J. Num. Meth. Eng. 17, 327–334

    Google Scholar 

  • Pironneau, O. A. (1989): Finite element methods for fluids. John Wiley and Sons

  • Prandtl, L. (1920): Ueber di Haerte plastischer Koerper. Goett. Nach., 74–84

  • Prandtl, L. (1921): Ueber die Eindringungsfestigkeit plastischer Baustoffe und die Festigkeit von scneiden. Z. angew. Math. Mech. 1, 15–20

    Google Scholar 

  • Read, H. E.; Hegemier, G. A. (1984): Strain softening of rock, soil and concrete—a review article. Mech. Mat. 3, 271–294

    Google Scholar 

  • Reddy and Simo, J. C. (1992): Stability and convergence analysis of a class of assumed strain mixed methods. Num. Math. 3, 271–294.

    Google Scholar 

  • Simo, J. C.; Ju, J. W. (1984): A continuum strain based damage model. Part I: Formulation and Part II: Numerical algorithms. Int. J. Solids Struct. 23, 821–840 and 841–870

    Google Scholar 

  • Simo, J. C.; Rifai, M. S. (1990): A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Eng. 29, 1595–1638

    Google Scholar 

  • Simo, J. C.; Hughes, T. J. R. (1991): Plasticity, viscoplasticity and viscoelasticity: formulation and numerical analysis Aspects. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Strang, G.; Fix, G. (1972): An analysis of the finite element method. In: Energy methods in finite element analysis. Englewood Cliffs, New Jersey: Prentice-Hall, pp. 1595–1638

    Google Scholar 

  • Suquet, P. M. (1981): Sur les équations de la plasticité: existence et regularité des solutions. J. Mech. 20, 5–39

    Google Scholar 

  • Suquet, P. M. (1978): Existence and regularity of solutions for plasticity problems. In: Nemat-Nasser (ed): Variational methods in the mechanics of solids, 304–309

  • Temam, R.; Strang, G. (1980): Functions of bounded deformation. Arch. Rational Mech. Anal. 75, 7–21

    Google Scholar 

  • Temam, R. (1986): A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity. Arch. Rational. Mech. Anal. 95, 137–183

    Google Scholar 

  • Thomas, T. Y. (1961): Plastic flow and fracture in solids, Academic Press

  • Willam, K.; Sobh, N.; Sture (1987): Elastic-plastic tangent operators: localization study on the constitutive and finite element levels. In: Nakazawa, S.; William, K.; Robelo, N. (eds): Advances in inelastic analysis, AMD-Vol. 28, 107–126

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, November 29, 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simo, J.C., Oliver, J. & Armero, F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics 12, 277–296 (1993). https://doi.org/10.1007/BF00372173

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1007/BF00372173

Keywords