Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

To investigate the natural defenses of Antarctic marine organisms against exposure to ultraviolet (UV) radiation (280 to 320 nm), 57 species (1 fish, 48 invertebrates, and 8 algae) were collected during austral spring 1988 in the vicinity of Palmer Station (Anvers Island, Antarctic Peninsula) and were analyzed for the presence of mycosporine-like amino acids (MAAs), compounds that absorb UV radiation and may provide shielding from these biologically hazardous wavelengths. Nearly 90% of the 57 species examined contained MAAs, and eight specific MAA compounds were identified. Seven of these (palythine, porphyra-334, shinorine, mycosporineglycine, palythene, asterina-330, and palythinol) have been observed previously in marine organisms from temperate and tropical latitudes. A new MAA, mycosporineglycine: valine, was found in the Antarctic fish and in 38 of the invertebrate species examined. This study confirms widespread occurrence of MAAs in Antarctic marine organisms and suggests that these species have some degree of natural biochemical protection from UV exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arpin, N., Bouillant, M. L. (1981). Light and mycosporines. In: Turian, G., Hohl, H. R. (eds.) The fungal spore, morphogenetic controls. Proc. 3rd int. fungal Spore Symp., Switzerland. Academic Press, London, p. 453–454

    Google Scholar 

  • Balch, W. M. and Haxo, F. T. (1984). Spectral properties ofNoctiluca militaris Suriray, a heterotrophic dinoflagellate. J. Plankton Res. 6: 515–525

    Google Scholar 

  • Caldwell, M. M. (1981). Plant response to solar ultraviolet radiation. Encycl. Pl. Physiol. (New Ser.) 12A: 169–197

    Google Scholar 

  • Calkins, J. (ed.) (1982). The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York

    Google Scholar 

  • Carreto, J. I., Carignan, M. O., Daleo, G., De Marco, S. G. (1990a). Occurrence of mycosporine-like amino acids in the redtide dinoflagellateAlexandrium-excavatum-UV-photoprotective compounds. J. Plankton Res. 12: 909–921

    Google Scholar 

  • Carreto, J. I., De Marco, S. G., Lutz, V. A. (1989). UV-absorbing pigments in the dinoflagellatesAlexandrium excavatum andProrocentrum micans. Effects of light intensity. In: Okaichi, T. Anderson, D. M., Nemoto, T. (eds.) Red tides biology, environmental science, and toxicology. Elsevier, New York, p. 333–336

    Google Scholar 

  • Carreto, J. I., Lutz, V. A., De Marco, S. G., Carignan, M. O. (1990b). Fluence and wavelength dependence of mycosporine amino acids synthesis in the dinoflagellateAlexandrium excavatum. In: Graneli, E., Edler, L., Sundström, B., Anderson, D. M. (eds.) Toxic marine phytoplankton. Elsevier, New York, p. 275–279

    Google Scholar 

  • Chalker, B. E., Dunlap, W. C. (1982). Extraction and quantitation of endosymbiotic algal pigments from reef-building corals. Proc. 4th int. coral Reef Symp. 2: 45–50

    Google Scholar 

  • Chioccara, F., Della Gala, A., de Rosa, M., Novellino, E., Prota, G. (1980). Mycosporine aminoacids and related compounds from the eggs of fishes. Bull. Soc. chim. Belg. 89: 1101–1106

    Google Scholar 

  • Cloud, P. E. (1968). Atmospheric and hydrospheric evolution of primitive earth. Science, Wash., D.C. 160: 729–736

    Google Scholar 

  • Dunlap, W. C., Chalker, B. E. (1986). Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5: 1–5

    Google Scholar 

  • Dunlap, W. C., Chalker, B. E., Bandaranayake, W. M. (1988). New sunscreening agents derived from tropical marine organisms of the Great Barrier Reef, Australia, Proc. 6th int. coral Reef Symp. [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville] 3: 89–93

    Google Scholar 

  • Dunlap, W. C., Chalker, B. E., Oliver, J. K. (1986). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J. exp. mar. Biol. Ecol. 104: 1–10

    Google Scholar 

  • Dunlap, W. C., Williams, D. McB., Chalker, B. E., Banaszak, A. (1989). Biochemical photoadaptation in vision: UV-absorbing pigments in fish eye tissues. Comp. Biochem. Physiol. 93B: 601–607

    Google Scholar 

  • Favre-Bonvin, J., Arpin, N., Brevard, C. (1976). Structure de la mycosporine (P310). Can. J. Chem. 54: 1105–1113

    Google Scholar 

  • Fischer, A. G. (1965). Fossils, early life, and atmospheric history. Proc. Natn. Acad. Sci. U.S.A. 53: 1205–1215

    Google Scholar 

  • Gardner, W. S., Miller, W. (1980). Reverse phase liquid chromatographic analysis of amino acids after reaction witho-phtaladehyde. Analyt. Biochem. 101: 61–65

    Google Scholar 

  • Harm, W. (1980). Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Haxo, F. T., Lewin, R. A., Lee, K. W., Li, M.-R. (1987). Fine structure and pigments ofOscillatoria (Trichodesmium) aff.thiebautii (Cyanophyta) in culture. Phycologia 26: 443–456

    Google Scholar 

  • Ito, S., Hirata, Y. (1977). Isolation and structure of a mycosporine from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 28: 2429–2430

    Google Scholar 

  • Jerlov, N. G. (1950). Ultra-violet radiation in the sea. Nature, Lond. 116: 111–112

    Google Scholar 

  • Jerlov, N. G. (1976). Marine optics. Elsevier, New York

    Google Scholar 

  • Karentz, D. (1990). Ecological considerations of the Antarctic ozone hole in the marine environment. In: Blough, N.V., Zepp, R. G. (eds.) Effects of solar ultraviolet radiation on biogeochemical dynamics in aquatic environments. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI-90-09, Woods Hole, Massachusetts, p. 137–140

    Google Scholar 

  • Karentz, D. (1991). Ecological considerations of Antarctic ozone depletion. Antarctic Sci. 3(1): 3–11

    Google Scholar 

  • Karentz, D., Lutze, L. H. (1990). Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol Oceanogr. 35: 549–561

    Google Scholar 

  • Krueger, A. J., Penn, L. M., Larko, D. E., Doiron, S. D., Guimaraes, P. T. (1989). 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas. NASA Ref. Pub. No. 1225. National Aeronautics and Space Administration, Washington, D.C.

    Google Scholar 

  • Lubin, D., Frederick, J. E., Booth, C. R., Lucas, T., Neuschuler, D. (1989). Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica. Geophys. Res. Lett. 16: 783–785

    Google Scholar 

  • Margulis, L. (1981). Symbiosis in evolution. W. H. Freeman, San Francisco

    Google Scholar 

  • Nakamura, H., Kobayashi, J., Hirata, Y. (1981). Isolation of a 330 nm UV-absorbing substance, asterina-330 from the starfishAsterina pectinifera. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1981: 1413–1414

    Google Scholar 

  • Nakamura, H., Kobayashi, J., Hirata, Y. (1982). Separation of mycosporine-like amino acids in marine organisms using reversedphased high performance liquid chromatography. J. Chromat. 250: 113–118

    Google Scholar 

  • Plack, P. A., Fraser, N. W., Grant, P. T., Middleton, C., Mitchell, A. I., Thomson, R. H. (1981). Gadusol, an enolic derivative of cyclohexane-1,3-dione present in the roes of cod and other marine fish. Biochem. J. 199: 741–747

    Google Scholar 

  • Shibata, K. (1969). Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Pl. Cell Physiol., Tokyo 10: 325–335

    Google Scholar 

  • Sivalingham, P. M., Ikawa, T., Nisizawa, K. (1974a). Possible physiological roles of a substance showing characteristic UV-absorbing patterns in some marine algae. Pl. Cell Physiol., Tokyo 15: 583–586

    Google Scholar 

  • Sivalingham, P. M., Ikawa, T., Nisizawa, K. (1976). Physiological roles of a substance 334 in algae. Botanica mar. 19: 9–21

    Google Scholar 

  • Sivalingham, P. M., Ikawa, T., Yokohama, Y., Nisizawa, K. (1974b). Distribution of a 334 UV-absorbing-substance in algae, with special regard of its possible physiological roles. Botanica mar. 17: 23–29

    Google Scholar 

  • Smith, R. C., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose rate in natural waters. Photochem. Photobiol. 29: 311–323

    Google Scholar 

  • Takano, S., Nakanishi, A., Uemura, D., Hirata, Y. (1979). Isolation and structure of a 334 nm UV-absorbing substance, porphyra-334 from the red algaPorphyra tenera Kjellman. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1979: 419–420

    Google Scholar 

  • Takano, S., Uemura, D., Hirata, Y. (1978a). Isolation and structure of a new amino acid, palythine, from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 26: 2299–2300

    Google Scholar 

  • Takano, S., Uemura, D., Hirata, Y. (1978b). Isolation and structure of two new amino acids, palythinol and palythene, from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 49: 4909–4912

    Google Scholar 

  • Tevini, M, Teramura, A. H. (1989). UV-B effects on terrestrial plants. Photochem. Photobiol. 50: 479–487

    Google Scholar 

  • Tsujino, I., Yabe, K., Sekekawa, I. (1980). Isolation and structure of a new amino acid, shinorine, from the red algaeChondrus yendoi Yamada et Mikami. Botanica mar. 23: 65–68

    Google Scholar 

  • Vernet, M., Neori, A., Haxo, F. T. (1989). Spectral properties and photosynthetic action in red-tide populations ofProrocentrum micans andGonyaulax polyedra. Mar. Biol. 103: 365–371

    Google Scholar 

  • Voytek, M. A. (1990). Addressing the biological effects of decreased ozone on the Antarctic environment. Ambio 19: 52–61

    Google Scholar 

  • Yentsch,C. S., Yentsch, C. M. (1982). The attenuation of light by marine phytoplankton with specific reference to the absorption of near-UV radiation. In: Calkins, J. (ed.) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York

    Google Scholar 

  • Yoshida, T., Sivalingham, P. M. (1970). Isolation and characterization of the 337 mµ UV-absorbing substance in red alga,Porphyra yezoensis Ueda. Pl. Cell Physiol., Tokyo 11: 427–434

    Google Scholar 

  • Zangerl, A. R., Berenbaum, M. R. (1987). Furanocoumarins in wild parsnip: effects of photosynthetically active radiation, ultraviolet light, and nutrients. Ecology 68: 516–520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Contribution No. 502 from the Australian Institute of Marine Science

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karentz, D., McEuen, F.S., Land, M.C. et al. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Mar. Biol. 108, 157–166 (1991). https://doi.org/10.1007/BF01313484

Download citation

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF01313484

Keywords