Abstract
To investigate the natural defenses of Antarctic marine organisms against exposure to ultraviolet (UV) radiation (280 to 320 nm), 57 species (1 fish, 48 invertebrates, and 8 algae) were collected during austral spring 1988 in the vicinity of Palmer Station (Anvers Island, Antarctic Peninsula) and were analyzed for the presence of mycosporine-like amino acids (MAAs), compounds that absorb UV radiation and may provide shielding from these biologically hazardous wavelengths. Nearly 90% of the 57 species examined contained MAAs, and eight specific MAA compounds were identified. Seven of these (palythine, porphyra-334, shinorine, mycosporineglycine, palythene, asterina-330, and palythinol) have been observed previously in marine organisms from temperate and tropical latitudes. A new MAA, mycosporineglycine: valine, was found in the Antarctic fish and in 38 of the invertebrate species examined. This study confirms widespread occurrence of MAAs in Antarctic marine organisms and suggests that these species have some degree of natural biochemical protection from UV exposure.
Similar content being viewed by others
Literature cited
Arpin, N., Bouillant, M. L. (1981). Light and mycosporines. In: Turian, G., Hohl, H. R. (eds.) The fungal spore, morphogenetic controls. Proc. 3rd int. fungal Spore Symp., Switzerland. Academic Press, London, p. 453–454
Balch, W. M. and Haxo, F. T. (1984). Spectral properties ofNoctiluca militaris Suriray, a heterotrophic dinoflagellate. J. Plankton Res. 6: 515–525
Caldwell, M. M. (1981). Plant response to solar ultraviolet radiation. Encycl. Pl. Physiol. (New Ser.) 12A: 169–197
Calkins, J. (ed.) (1982). The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York
Carreto, J. I., Carignan, M. O., Daleo, G., De Marco, S. G. (1990a). Occurrence of mycosporine-like amino acids in the redtide dinoflagellateAlexandrium-excavatum-UV-photoprotective compounds. J. Plankton Res. 12: 909–921
Carreto, J. I., De Marco, S. G., Lutz, V. A. (1989). UV-absorbing pigments in the dinoflagellatesAlexandrium excavatum andProrocentrum micans. Effects of light intensity. In: Okaichi, T. Anderson, D. M., Nemoto, T. (eds.) Red tides biology, environmental science, and toxicology. Elsevier, New York, p. 333–336
Carreto, J. I., Lutz, V. A., De Marco, S. G., Carignan, M. O. (1990b). Fluence and wavelength dependence of mycosporine amino acids synthesis in the dinoflagellateAlexandrium excavatum. In: Graneli, E., Edler, L., Sundström, B., Anderson, D. M. (eds.) Toxic marine phytoplankton. Elsevier, New York, p. 275–279
Chalker, B. E., Dunlap, W. C. (1982). Extraction and quantitation of endosymbiotic algal pigments from reef-building corals. Proc. 4th int. coral Reef Symp. 2: 45–50
Chioccara, F., Della Gala, A., de Rosa, M., Novellino, E., Prota, G. (1980). Mycosporine aminoacids and related compounds from the eggs of fishes. Bull. Soc. chim. Belg. 89: 1101–1106
Cloud, P. E. (1968). Atmospheric and hydrospheric evolution of primitive earth. Science, Wash., D.C. 160: 729–736
Dunlap, W. C., Chalker, B. E. (1986). Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5: 1–5
Dunlap, W. C., Chalker, B. E., Bandaranayake, W. M. (1988). New sunscreening agents derived from tropical marine organisms of the Great Barrier Reef, Australia, Proc. 6th int. coral Reef Symp. [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville] 3: 89–93
Dunlap, W. C., Chalker, B. E., Oliver, J. K. (1986). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J. exp. mar. Biol. Ecol. 104: 1–10
Dunlap, W. C., Williams, D. McB., Chalker, B. E., Banaszak, A. (1989). Biochemical photoadaptation in vision: UV-absorbing pigments in fish eye tissues. Comp. Biochem. Physiol. 93B: 601–607
Favre-Bonvin, J., Arpin, N., Brevard, C. (1976). Structure de la mycosporine (P310). Can. J. Chem. 54: 1105–1113
Fischer, A. G. (1965). Fossils, early life, and atmospheric history. Proc. Natn. Acad. Sci. U.S.A. 53: 1205–1215
Gardner, W. S., Miller, W. (1980). Reverse phase liquid chromatographic analysis of amino acids after reaction witho-phtaladehyde. Analyt. Biochem. 101: 61–65
Harm, W. (1980). Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge
Haxo, F. T., Lewin, R. A., Lee, K. W., Li, M.-R. (1987). Fine structure and pigments ofOscillatoria (Trichodesmium) aff.thiebautii (Cyanophyta) in culture. Phycologia 26: 443–456
Ito, S., Hirata, Y. (1977). Isolation and structure of a mycosporine from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 28: 2429–2430
Jerlov, N. G. (1950). Ultra-violet radiation in the sea. Nature, Lond. 116: 111–112
Jerlov, N. G. (1976). Marine optics. Elsevier, New York
Karentz, D. (1990). Ecological considerations of the Antarctic ozone hole in the marine environment. In: Blough, N.V., Zepp, R. G. (eds.) Effects of solar ultraviolet radiation on biogeochemical dynamics in aquatic environments. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI-90-09, Woods Hole, Massachusetts, p. 137–140
Karentz, D. (1991). Ecological considerations of Antarctic ozone depletion. Antarctic Sci. 3(1): 3–11
Karentz, D., Lutze, L. H. (1990). Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol Oceanogr. 35: 549–561
Krueger, A. J., Penn, L. M., Larko, D. E., Doiron, S. D., Guimaraes, P. T. (1989). 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas. NASA Ref. Pub. No. 1225. National Aeronautics and Space Administration, Washington, D.C.
Lubin, D., Frederick, J. E., Booth, C. R., Lucas, T., Neuschuler, D. (1989). Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica. Geophys. Res. Lett. 16: 783–785
Margulis, L. (1981). Symbiosis in evolution. W. H. Freeman, San Francisco
Nakamura, H., Kobayashi, J., Hirata, Y. (1981). Isolation of a 330 nm UV-absorbing substance, asterina-330 from the starfishAsterina pectinifera. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1981: 1413–1414
Nakamura, H., Kobayashi, J., Hirata, Y. (1982). Separation of mycosporine-like amino acids in marine organisms using reversedphased high performance liquid chromatography. J. Chromat. 250: 113–118
Plack, P. A., Fraser, N. W., Grant, P. T., Middleton, C., Mitchell, A. I., Thomson, R. H. (1981). Gadusol, an enolic derivative of cyclohexane-1,3-dione present in the roes of cod and other marine fish. Biochem. J. 199: 741–747
Shibata, K. (1969). Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Pl. Cell Physiol., Tokyo 10: 325–335
Sivalingham, P. M., Ikawa, T., Nisizawa, K. (1974a). Possible physiological roles of a substance showing characteristic UV-absorbing patterns in some marine algae. Pl. Cell Physiol., Tokyo 15: 583–586
Sivalingham, P. M., Ikawa, T., Nisizawa, K. (1976). Physiological roles of a substance 334 in algae. Botanica mar. 19: 9–21
Sivalingham, P. M., Ikawa, T., Yokohama, Y., Nisizawa, K. (1974b). Distribution of a 334 UV-absorbing-substance in algae, with special regard of its possible physiological roles. Botanica mar. 17: 23–29
Smith, R. C., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose rate in natural waters. Photochem. Photobiol. 29: 311–323
Takano, S., Nakanishi, A., Uemura, D., Hirata, Y. (1979). Isolation and structure of a 334 nm UV-absorbing substance, porphyra-334 from the red algaPorphyra tenera Kjellman. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1979: 419–420
Takano, S., Uemura, D., Hirata, Y. (1978a). Isolation and structure of a new amino acid, palythine, from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 26: 2299–2300
Takano, S., Uemura, D., Hirata, Y. (1978b). Isolation and structure of two new amino acids, palythinol and palythene, from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 49: 4909–4912
Tevini, M, Teramura, A. H. (1989). UV-B effects on terrestrial plants. Photochem. Photobiol. 50: 479–487
Tsujino, I., Yabe, K., Sekekawa, I. (1980). Isolation and structure of a new amino acid, shinorine, from the red algaeChondrus yendoi Yamada et Mikami. Botanica mar. 23: 65–68
Vernet, M., Neori, A., Haxo, F. T. (1989). Spectral properties and photosynthetic action in red-tide populations ofProrocentrum micans andGonyaulax polyedra. Mar. Biol. 103: 365–371
Voytek, M. A. (1990). Addressing the biological effects of decreased ozone on the Antarctic environment. Ambio 19: 52–61
Yentsch,C. S., Yentsch, C. M. (1982). The attenuation of light by marine phytoplankton with specific reference to the absorption of near-UV radiation. In: Calkins, J. (ed.) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York
Yoshida, T., Sivalingham, P. M. (1970). Isolation and characterization of the 337 mµ UV-absorbing substance in red alga,Porphyra yezoensis Ueda. Pl. Cell Physiol., Tokyo 11: 427–434
Zangerl, A. R., Berenbaum, M. R. (1987). Furanocoumarins in wild parsnip: effects of photosynthetically active radiation, ultraviolet light, and nutrients. Ecology 68: 516–520
Author information
Authors and Affiliations
Additional information
Communicated by J. Grassle, New Brunswick
Contribution No. 502 from the Australian Institute of Marine Science
Rights and permissions
About this article
Cite this article
Karentz, D., McEuen, F.S., Land, M.C. et al. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Mar. Biol. 108, 157–166 (1991). https://doi.org/10.1007/BF01313484
Accepted:
Issue date:
DOI: https://doi.org/10.1007/BF01313484