Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Global conformal invariance in quantum field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Suppose that there is given a Wightman quantum field theory (QFT) whose Euclidean Green functions are invariant under the Euclidean conformal group

⋍SO e (5,1). We show that its Hilbert space of physical states carries then a unitary representation of the universal (∞-sheeted) covering group

* of the Minkowskian conformal group SO e (4, 2)ℤ2. The Wightman functions can be analytically continued to a domain of holomorphy which has as a real boundary an ∞-sheeted covering\(\tilde M\) of Minkowski-spaceM 4. It is known that

* can act on this space\(\tilde M\) and that\(\tilde M\) admits a globally

*-invariant causal ordering;\(\tilde M\) is thus the natural space on which a globally

*-invariant local QFT could live. We discuss some of the properties of such a theory, in particular the spectrum of the conformal HamiltonianH=1/2(P 0+K 0).

As a tool we use a generalized Hille-Yosida theorem for Lie semigroups. Such a theorem is stated and proven in Appendix C. It enables us to analytically continue contractive representations of a certain maximal subsemigroup\(\mathfrak{S}\) of

to unitary representations of

*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mack, G.: J. Phys.34, Colloque C-1 (Suppl. au No 10) 99 (1973); In: Renormalization and Invariance in quantum field theory, E. R. Caianello (Ed.), New York: Plenum Press (1974)

    Google Scholar 

  2. Mack, G.: Lectures presented at the 1974 Bonn summer school. Proceedings: Lecture notes in physics. Berlin-Heidelberg-New York: Springer (in preparation)

  3. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and all that. New York: W. A. Benjamin 1964

    Google Scholar 

  4. Hortacsu, M., Seiler, R., Schroer, B.: Phys. Rev. D5, 2518 (1972)

    Google Scholar 

  5. Kastrup,H.A., Mayer,D.H., Go,T.H., to be publ. in Rep. on Math. Phys. (1974)

  6. Mack, G., Abdus Salam: Ann. Phys. (N.Y.)53, 174 (1969)

    Google Scholar 

  7. Segal, I.: Bull. Am. Math. Soc.77, 958 (1971)

    Google Scholar 

  8. Mayer,D.H.: Conformal invariant causal structures on pseudo-Riemannian manifolds. Preprint: Aachen, Apr. 1974

  9. Go,T.H.: Some remarks on conformal invariant theories formulated on some four-Lorentz manifolds. Preprint: Aachen, June 1974

  10. Todorov,I.T.: CERN TH 1697 (1973), Appendix

  11. Schroer,B., Swieca,J.A.: Conformal transformations for quantized fields. Preprint: P. Univ. Catolica do Rio de Janeiro, Apr. 1974. See also: Swieca,J.A., Völkel,A.H.: Commun. math. Phys.29, 319 (1973);

  12. Rühl,W.: Preprint, Universität Trier-Kaiserslautern 1973; Commun. math. Phys.30, 287 (1973)

  13. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. S. Francisco: Freeman 1973

    Google Scholar 

  14. Glaser,V.: CERN preprint TH 1706 (1973), to appear in Commun. Math. Phys.

  15. Osterwalder, K., Schrader, R.: Commun. math. Phys.31, 83 (1973) and in preparation; Osterwalder,K.: In: Constructive Quantum Field Theory, G. Velo and A. S. Wightman (Eds.), Lecture Notes in Physics25, Verlag Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  16. Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969

    Google Scholar 

  17. Mack, G., Todorov, I.T.: Phys. Rev. D8, 1764 (1973)

    Google Scholar 

  18. Adler, S.L.: Phys. Rev. D6, 3445 (1972)

    Google Scholar 

  19. Ferrara, S., Mattioli, G., Rossi, G., Toller, M.: Nucl. Phys.B53, 366 (1973)

    Google Scholar 

  20. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. 1, ch. I, propositions 4.2. New York: Interscience Publ. 1963

    Google Scholar 

  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products, formula 8.930. New York: Academic Press 1965

    Google Scholar 

  22. Koller,K.: DESY 74/8 and submitted to Commun. math. Phys.

  23. Mack, G.: In: Lecture Notes in Physics17, p. 300, W. Rühl and A. Vancura (Eds.), Berlin-Heidelberg-New York: Springer 1973 (Sec. 8A)

    Google Scholar 

  24. Nachtmann, O.: Nucl. Phys.B63, 237 (1973)

    Google Scholar 

  25. Callan, C.G., Gross, D.: Phys. Rev. D8, 4383 (1973)

    Google Scholar 

  26. Ferrara, S., Gatto, R., Grillo, A.: Springer Tracts in Modern Physics, Vol.67. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  27. Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya., Generalized functions, Vol. 5. New York: Academic Press 1966

    Google Scholar 

  28. Hille,E., Phillips,R.S.: Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. pub.31, 1957

  29. Reed, M.C.: In: Lecture Notes in Physics, Vol.25, G. Velo and A. S. Wightman (Eds.) Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  30. Pontrjagin,L.: Topological groups. Princeton University Press 1946

  31. Nelson, E.: Analytic vectors, Ann. Math.70, 572 (1959)

    Google Scholar 

  32. Warner, G.: Harmonic analysis on semi-simple Lie groups, Vol. 1. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  33. Ref. 29, Lemma 4.4.5.1 and following remarks

  34. Flato, M., Simon, J., Snellman, H., Sternheimer, D.: Simple facts about analytic vectors and analyticity, Ann. Sci. E.N.S. Paris5 (3) 1972

    Google Scholar 

  35. Simon, J.: Commun. math. Phys.23, 39 (1972)

    Google Scholar 

  36. Helgason, S.: Differential geometry and Symmetric Spaces, New York: Academic Press 1962

    Google Scholar 

  37. Bochner,S., Martin,W.T.: Several complex variables. Princeton Univ. Press 1948

  38. Kupsch,J., Rühl,W., Yunn,B.C.: Conformal invariance of quantum fields in two-dimensional space-time, Universität Trier-Kaiserslautern, Preprint 1974

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Haag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüscher, M., Mack, G. Global conformal invariance in quantum field theory. Commun.Math. Phys. 41, 203–234 (1975). https://doi.org/10.1007/BF01608988

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF01608988

Keywords