Abstract
Suppose that there is given a Wightman quantum field theory (QFT) whose Euclidean Green functions are invariant under the Euclidean conformal group
⋍SO e (5,1). We show that its Hilbert space of physical states carries then a unitary representation of the universal (∞-sheeted) covering group
* of the Minkowskian conformal group SO e (4, 2)ℤ2. The Wightman functions can be analytically continued to a domain of holomorphy which has as a real boundary an ∞-sheeted covering\(\tilde M\) of Minkowski-spaceM 4. It is known that
* can act on this space\(\tilde M\) and that\(\tilde M\) admits a globally
*-invariant causal ordering;\(\tilde M\) is thus the natural space on which a globally
*-invariant local QFT could live. We discuss some of the properties of such a theory, in particular the spectrum of the conformal HamiltonianH=1/2(P 0+K 0).
As a tool we use a generalized Hille-Yosida theorem for Lie semigroups. Such a theorem is stated and proven in Appendix C. It enables us to analytically continue contractive representations of a certain maximal subsemigroup\(\mathfrak{S}\) of
to unitary representations of
*.
Similar content being viewed by others
References
Mack, G.: J. Phys.34, Colloque C-1 (Suppl. au No 10) 99 (1973); In: Renormalization and Invariance in quantum field theory, E. R. Caianello (Ed.), New York: Plenum Press (1974)
Mack, G.: Lectures presented at the 1974 Bonn summer school. Proceedings: Lecture notes in physics. Berlin-Heidelberg-New York: Springer (in preparation)
Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and all that. New York: W. A. Benjamin 1964
Hortacsu, M., Seiler, R., Schroer, B.: Phys. Rev. D5, 2518 (1972)
Kastrup,H.A., Mayer,D.H., Go,T.H., to be publ. in Rep. on Math. Phys. (1974)
Mack, G., Abdus Salam: Ann. Phys. (N.Y.)53, 174 (1969)
Segal, I.: Bull. Am. Math. Soc.77, 958 (1971)
Mayer,D.H.: Conformal invariant causal structures on pseudo-Riemannian manifolds. Preprint: Aachen, Apr. 1974
Go,T.H.: Some remarks on conformal invariant theories formulated on some four-Lorentz manifolds. Preprint: Aachen, June 1974
Todorov,I.T.: CERN TH 1697 (1973), Appendix
Schroer,B., Swieca,J.A.: Conformal transformations for quantized fields. Preprint: P. Univ. Catolica do Rio de Janeiro, Apr. 1974. See also: Swieca,J.A., Völkel,A.H.: Commun. math. Phys.29, 319 (1973);
Rühl,W.: Preprint, Universität Trier-Kaiserslautern 1973; Commun. math. Phys.30, 287 (1973)
Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. S. Francisco: Freeman 1973
Glaser,V.: CERN preprint TH 1706 (1973), to appear in Commun. Math. Phys.
Osterwalder, K., Schrader, R.: Commun. math. Phys.31, 83 (1973) and in preparation; Osterwalder,K.: In: Constructive Quantum Field Theory, G. Velo and A. S. Wightman (Eds.), Lecture Notes in Physics25, Verlag Berlin-Heidelberg-New York: Springer 1973
Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969
Mack, G., Todorov, I.T.: Phys. Rev. D8, 1764 (1973)
Adler, S.L.: Phys. Rev. D6, 3445 (1972)
Ferrara, S., Mattioli, G., Rossi, G., Toller, M.: Nucl. Phys.B53, 366 (1973)
Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. 1, ch. I, propositions 4.2. New York: Interscience Publ. 1963
Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products, formula 8.930. New York: Academic Press 1965
Koller,K.: DESY 74/8 and submitted to Commun. math. Phys.
Mack, G.: In: Lecture Notes in Physics17, p. 300, W. Rühl and A. Vancura (Eds.), Berlin-Heidelberg-New York: Springer 1973 (Sec. 8A)
Nachtmann, O.: Nucl. Phys.B63, 237 (1973)
Callan, C.G., Gross, D.: Phys. Rev. D8, 4383 (1973)
Ferrara, S., Gatto, R., Grillo, A.: Springer Tracts in Modern Physics, Vol.67. Berlin-Heidelberg-New York: Springer 1973
Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya., Generalized functions, Vol. 5. New York: Academic Press 1966
Hille,E., Phillips,R.S.: Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. pub.31, 1957
Reed, M.C.: In: Lecture Notes in Physics, Vol.25, G. Velo and A. S. Wightman (Eds.) Berlin-Heidelberg-New York: Springer 1973
Pontrjagin,L.: Topological groups. Princeton University Press 1946
Nelson, E.: Analytic vectors, Ann. Math.70, 572 (1959)
Warner, G.: Harmonic analysis on semi-simple Lie groups, Vol. 1. Berlin-Heidelberg-New York: Springer 1972
Ref. 29, Lemma 4.4.5.1 and following remarks
Flato, M., Simon, J., Snellman, H., Sternheimer, D.: Simple facts about analytic vectors and analyticity, Ann. Sci. E.N.S. Paris5 (3) 1972
Simon, J.: Commun. math. Phys.23, 39 (1972)
Helgason, S.: Differential geometry and Symmetric Spaces, New York: Academic Press 1962
Bochner,S., Martin,W.T.: Several complex variables. Princeton Univ. Press 1948
Kupsch,J., Rühl,W., Yunn,B.C.: Conformal invariance of quantum fields in two-dimensional space-time, Universität Trier-Kaiserslautern, Preprint 1974
Author information
Authors and Affiliations
Additional information
Communicated by R. Haag
Rights and permissions
About this article
Cite this article
Lüscher, M., Mack, G. Global conformal invariance in quantum field theory. Commun.Math. Phys. 41, 203–234 (1975). https://doi.org/10.1007/BF01608988
Received:
Issue date:
DOI: https://doi.org/10.1007/BF01608988