Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Functional molecular aspects of the NADH dehydrogenases of plant mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

There are multiple routes of NAD(P)H oxidation associated with the inner membrane of plant mitochondria. These are the phosphorylating NADH dehydrogenase, otherwise known as Complex I, and at least four other nonphosphorylating NAD(P)H dehydrogenases. Complex I has been isolated from beetroot, broad bean, and potato mitochondria. It has at least 32 polypeptides associated with it, contains FMN as its prosthetic group, and the purified enzyme is sensitive to inhibition by rotenone. In terms of subunit complexity it appears similar to the mammalian and fungal enzymes. Some polypeptides display antigenic similarity to subunits fromNeurospora crassa but little cross-reactivity to antisera raised against some beef heart complex I subunits. Plant complex I contains eight mitochondrial encoded subunits with the remainder being nuclear-encoded. Two of these mitochondrial-encoded subunits, nad7 and nad9, show homology to corresponding nuclear-encoded subunits inNeurospora crassa (49 and 30 kDa, respectively) and beef heart CI (49 and 31 kDa, respectively), suggesting a marked difference between the assembly of CI from plants and the fungal and mammalian enzymes. As well as complex I, plant mitochondria contain several type-II NAD(P)H dehydrogenases which mediate rotenone-insensitive oxidation of cytosolic and matrix NADH. We have isolated three of these dehydrogenases from beetroot mitochondria which are similar to enzymes isolated from potato mitochondria. Two of these enzymes are single polypeptides (32 and 55 kDa) and appear similar to those found in maize mitochondria, which have been localized to the outside of the inner membrane. The third enzyme appears to be a dimer comprised of two identical 43-kDa subunits. It is this enzyme that we believe contributes to rotenone-insensitive oxidation of matrix NADH. In addition to this type-II dehydrogenases, several observations suggest the presence of a smaller form of CI present in plant mitochondria which is insensitive to rotenone inhibition. We propose that this represents the peripheral arm of CI in plant mitochondria and may participate in nonphosphorylating matrix NADH oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arron, G. P., and Edwards, G. E. (1980).Plant Physiol. 65, 591–594.

    Google Scholar 

  • Barrera, C. R., Namihira, G., Hamilton, C., Munk, P. Eley, M. H., Linn, T. C., and Reed, L. J. (1972).Arch. Biochem. Biophys. 148, 343–358.

    Article  PubMed  Google Scholar 

  • Brunton, C. J., and Palmer, J. M. (1973).Eur. J. Biochem. 39, 283–291.

    Article  PubMed  Google Scholar 

  • Bryce, J. H., Azcon-Bieto, J., Wiskich, J. T., and Day, D. A. (1990).Physiol. Plant. 78, 105–111.

    Article  Google Scholar 

  • Büschges, R., Bahrenberg, G., Zimmermann, M., and Wolf, K. (1994).Yeast 10, 475–479.

    Article  PubMed  Google Scholar 

  • Carlenor, E., Persson, B., Glaser, E., Andersson, B., and Rydstrom, J. (1988).Plant Physiol. 88, 303–308.

    Google Scholar 

  • Chauveau, M., and Lance, C. (1990).Plant Physiol. 95, 934–942.

    Google Scholar 

  • Cook, N. D., and Cammack, R. (1984).Eur. J. Biochem. 141, 573–577.

    Article  PubMed  Google Scholar 

  • Cook, N. D., and Cammack, R. (1985).Biochim. Biophys. Acta 827, 30–35.

    Google Scholar 

  • Cottingham, I. R., and Moore, A. L. (1984).Biochem. J. 224, 171–179.

    PubMed  Google Scholar 

  • Crowder, S. E., and Ragan, C. I. (1977).Biochem. J. 165, 295–301.

    PubMed  Google Scholar 

  • Day, D. A., Rayner, J. R., and Wiskich, J. T. (1976).Plant Physiol. 58, 38–42.

    Google Scholar 

  • Day, D. A., Whelan, J., Millar, A. H., Siedow, J. N., and Wiskich, J. T. (1995).Aust. J. Plant. Physiol. 22, in press.

  • Earley, F. G. p., Patel, S. D., Ragan, C. I., and Attardi, G. (1987).FEBS Lett. 219, 108–113.

    Article  PubMed  Google Scholar 

  • Ernster, L. (1987).Chem. Scr. 27A, 1–13.

    Google Scholar 

  • Fredlund, K. M., Rasmusson, A. G., and Møller, I. M. (1991).Plant Physiol. 97, 99–103.

    Google Scholar 

  • Friedrich, T., Hofhaus, G., Ise, W., Nehls, U., Schmitz, B., and Weiss, H. (1989).Eur. J. Biochem. 180, 173–180.

    Article  PubMed  Google Scholar 

  • Friedrich, T., Strohdeicher, M., Hofhaus, G., Preis, D., Sahm, H., and Weiss, H. (1990).FEBS Lett. 265, 37–40.

    Article  PubMed  Google Scholar 

  • Friedrich, T., Weidner, U., Nehls, U., Fecke, W., Schneider, R., and Weiss, H. (1993).J. Bioenerg. Biomembr. 25, 331–337.

    PubMed  Google Scholar 

  • Friedrich, T., Van Heek, P., Leif, H., Ohnishi, T., Forche, E., Knuze, B., Jansen, R., Trowitzsch-Kienast, W., Hofle, G., Reichenbach, H. and Weiss, H. (1994).Eur. J. Biochem. 219, 691–698.

    Article  PubMed  Google Scholar 

  • Gäbler, L., Herz, U., Liddell, A., Leaver, C. J., Schröder, W., Brennicke, A., and Grohmann, L. (1994).Mol. Gen. Genet. 244, 33–40.

    Article  PubMed  Google Scholar 

  • Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962).J. Biol. Chem. 237, 1676–1680.

    PubMed  Google Scholar 

  • Herz, U., Schröder, W., Liddell, A., Leaver, C. J., Brennicke, A., and Grohmann, L. (1994).J. Biol. Chem. 269, 2263–2269.

    PubMed  Google Scholar 

  • Hofhaus, G., and Attardi, G. (1993).EMBO J. 12, 3043–3048.

    PubMed  Google Scholar 

  • Klein, R. R., and Burke, J. J. (1984).Plant Physiol. 76, 436–441.

    Google Scholar 

  • Knudten, A. F., Thelen, J. J., Leuthy, M. H., and Elthon, T. E. (1994).Plant Physiol. 106, 1115–1122.

    PubMed  Google Scholar 

  • Koeppe, D. E., and Miller, R. J. (1972).Plant Physiol. 49, 353–357.

    Google Scholar 

  • Kromer, S., Hianning, I., and Heldt, H. W. (1992). InMolecular, Biochemical and Physiological Aspects of Plant Respiration. (Lambers, H., and Van Der Plas, L. H. W., eds.), SPB Academic Publishing, The Hague, pp. 167–176.

    Google Scholar 

  • Kubo, T., Mikami, T., and Kinoshita, T. (1993).Mol. Gen. Genet. 241, 479–482.

    Article  PubMed  Google Scholar 

  • Lamattina, L., Gonzalez, D., Gualberto, J., and Grienenberger, J. M. (1993).Eur. J. Biochem. 217, 831–838.

    Article  PubMed  Google Scholar 

  • Leif, H., Weidner, U., Breger, A., and Spehr, V. (1993).Biochem. Soc. Trans. 21, 998–1001.

    PubMed  Google Scholar 

  • Leterme, S., and Boutry, M. (1993).Plant Physiol. 102, 435–443.

    Article  PubMed  Google Scholar 

  • Leuthy, M. H., Hayes, M. K., and Elthon, T. E. (1991).Plant Physiol. 97, 1317–1322.

    Google Scholar 

  • Leuthy, M. H., Knudten, A. F., and Elthon, T. E. (1992). InMolecular, Biochemical, and Physiological Aspects of Plant Respiration. (Lambers, H., and Van Der Plas, L. H. W., eds.), SPB Academic Publishing, The Hague, pp. 29–36.

    Google Scholar 

  • Leuthy, M. H., Thelen, J. J., Knudten, A. F., and Elthon, T. E. (1995).Plant Physiol. 107, 443–450.

    PubMed  Google Scholar 

  • Menz, R. I., Griffith, M., Day, D. A., and Wiskich, J. T. (1992).Eur. J. Biochem. 208, 481–485.

    Article  PubMed  Google Scholar 

  • Møller, I. M., and Lin, W. (1986).Annu. Rev. Plant. Physiol. 37, 309–334.

    Article  Google Scholar 

  • Møller, I. M., and Palmer, J. M. (1981).Physiol. Plant. 53, 413–420.

    Google Scholar 

  • Møller, I. M., and Palmer, J. M. (1982).Physiol. Plant. 54, 267–274.

    Google Scholar 

  • Møller, I. M., Rasmusson, A. G., and Fredlund, K. M. (1993).J. Bioenerg. Biomembr. 25, 377–384.

    Article  PubMed  Google Scholar 

  • Nash, D., and Wiskich, J. T. (1983).Plant Physiol. 71, 627–634.

    Google Scholar 

  • Nehls, U., Friedrich, T., Schmeide, A., Ohnishi, T., and Weiss, H. (1992).J. Mol. Biol. 227, 1032–1042.

    Article  PubMed  Google Scholar 

  • Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanegae, T., Kohchi, T., and Ohyama, K. (1992).J. Mol. Biol. 223, 1–7.

    Article  PubMed  Google Scholar 

  • Rasmusson, A. G., and Møller, I. M. (1991a).Physiol. Plant. 83, 357–356.

    Article  Google Scholar 

  • Rasmusson, A. G., and Møller, I. M. (1991b).Eur. J. Biochem. 202, 617–623.

    Article  PubMed  Google Scholar 

  • Rasmusson, A. G., Fredlund, K. M., and Møller, I. M. (1993).Biochim. Biophys. Acta 1141, 107–110.

    Google Scholar 

  • Rasmusson, A. G., Mendel-Hartvig, J., Møller, I. M., and Wiskich, J. T. (1994).Physiol. Plant. 90, 607–615.

    Article  Google Scholar 

  • Ravanel, P., Tissuut, M., and Douce, R. (1986).Plant Physiol. 80, 500–504.

    Google Scholar 

  • Rayner, J. R., and Wiskich, J. T. (1983).Aust. J. Plant. Physiol. 10, 55–63.

    Google Scholar 

  • Rugolo, M., and Zannoni, D. (1992).Plant Physiol. 99, 1037–1043.

    Google Scholar 

  • Rychter, A. M., Chauveau, M., Bomsel, J.-L., and Lance, C. (1992).Physiol. Plant. 84, 80–86.

    Article  Google Scholar 

  • Schmidt, M., Friedrich, T., Wallrath, J., Ohnishi, T., and Weiss, H. (1992).FEBS Lett. 313, 8–11.

    Article  PubMed  Google Scholar 

  • Schulte, U., Fecke, W., Krull, C., Nehls, U., Schmiede, A., Schneider, R., Ohnishi, T., and Weiss, H. (1994).Biochim. Biophys. Acta 1187, 121–124.

    PubMed  Google Scholar 

  • Soole, K. L. (1989). Unpublished PhD Thesis, The University of Adelaide, South Australia.

  • Soole, K. L., Dry, I. B., James, A. T., and Wiskich, J. T. (1990).Physiol. Plant. 80, 75–82.

    Article  Google Scholar 

  • Soole, K. L., Dry, I. B., and Wiskich, J. T. (1992).Plant Physiol. 98, 588–594.

    Google Scholar 

  • Tuschen, G., Scakmann, U., Nehls, U., Haiker, H., Buse, G., and Weiss, H. (1990).J. Mol. Biol. 213, 845–857.

    PubMed  Google Scholar 

  • Walker, J. E. (1992).Q. Rev. Biophys. 25, 253–324.

    PubMed  Google Scholar 

  • Weiss, H., Friedrich, T., Hofhaus, G., and Preis, D. (1991).Eur. J. Biochem. 197, 563–576.

    Article  PubMed  Google Scholar 

  • Wiskich, J. T., and Bonner, W. D. (1963).Plant. Physiol. 38, 594–604.

    Google Scholar 

  • Wiskich, J. T., and Menz, R. I. (1993). InPlant Mitochondria (Brennicke, A., and Kuck, U., eds.), VCH, Weinheim, Germany, pp. 261–274.

    Google Scholar 

  • Yagi, T. (1993).Biochim. Biophys. Acta 1141, 1–17.

    PubMed  Google Scholar 

  • Zambrano, M., and Kolter, R. (1993).J. Bacteriol. 175, 5642–5647.

    PubMed  Google Scholar 

  • Zottini, M., Mandolino, G., and Zannoni, D. (1993).Plant Physiol. 102, 579–585.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soole, K.L., Menz, R.I. Functional molecular aspects of the NADH dehydrogenases of plant mitochondria. J Bioenerg Biomembr 27, 397–406 (1995). https://doi.org/10.1007/BF02110002

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02110002

Key words