Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Ammonia distribution and excretion in fish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This paper reviews the literature concerning ammonia production, storage and excretion in fish. Ammonia is the end product of protein catabolism and is stored in the body of fish in high concentrations relative to basal excretion rates. Ammonia, if allowed to accumulate, is toxic and is converted to less toxic compounds or excreted. Like other weak acids and bases, ammonia is distributed between tissue compartments in relation to transmembrane pH gradients. NH3 is generally equilibrated between compartments but NH4 + is distributed according to pH. Ammonia is eliminated from the blood upon passage through the gills. The mechanisms of branchial ammonia excretion vary between different species of fish and different environments, and primarily involves NH3 passive diffusion and NH4 +/Na+ exchange. Water chemistry near the gill surface may also be important to ammonia excretion, but a more accurate measurement of the NH3 gradient across the gill epithelium is required before a more detailed analysis of NH3 and NH4 + excretion can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alabastar, J.S. and Herbert, D.W.M. 1954. Influence of carbon dioxide on the toxicity of ammonia. Nature, Lond. 174: 404.

    Google Scholar 

  • Binstock, L. and Lecar, H. 1969. Ammonium ion currents in the squid giant axon. J. Gen. Physiol. 53: 342–361.

    Google Scholar 

  • Boutilier, R.G., Heming, T.A. and Iwama, G.K. 1984. Appendix: Physiochemical parameters for use in fish respiratory physiology.In Fish Physiology, Vol. 10A pp. 403–430. Edited by W.S. Hoar and D.J. Randall. Academic Press Inc., New York.

  • Brett, J.R. and Zala, C.A. 1975. Daily pattern of nitrogen excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. J. Fish. Res. Board Can. 32: 2479–2486.

    Google Scholar 

  • Buckley, J.A., Whitmore, C.M. and Liming, D.S. 1979. Effect of prolonged exposure to ammonia on the blood and liver glycogen of coho salmon (Oncorhynchus kisutch). Comp. Biochem. Physiol. 63C: 297–303.

    Google Scholar 

  • Cameron, J.N. and Heisler, N. 1983. Studies of ammonia in the rainbow trout: physio-chemical parameters, acid-base behavior, and respiratory clearance. J. Exp. Biol. 105: 107–125.

    Google Scholar 

  • Claiborne, J.B., Evans, D.H. and Goldstein, L. 1982. Fish branchial Na+/NH4 + exchange is via basolateral Na+-K+-activated ATPase. J. Exp. Biol. 96: 431–434.

    Google Scholar 

  • Claiborne, J.B. and Heisler, N. 1984. Acid-base regulation in the carp (Cyprinus carpio) during and after exposure to environmental hypercapnia. J. Exp. Biol. 108: 25–43.

    Google Scholar 

  • de Vooys, G.G.N. 1968. Formation and excretion of ammonia in Teleostei. I. Excretion of ammonia through the gills. Arch. Inter. Physiol. Biochimie. 76: 268–272.

    Google Scholar 

  • Dimberg, K., Hoglund, L.B., Knutsson, P.G. and Ridderstrale, Y. 1981. Histochemical localization of carbonic anhydrase in gill lamellae from young salmon (Salmo salar L.) adapted to fresh and salt water. Acta Physiol. Scand. 112: 218–220.

    Google Scholar 

  • Driedzic, W.R. and Hochachka, P.W. 1976. Control of energy metabolism in fish white muscle. Am. J. Physiol. 230: 579–582.

    Google Scholar 

  • Driedzic, W.R. and Hochachka, P.W. 1978. Metabolism in fish during exercise.In Fish Physiology, Vol 7. pp. 503–543. Edited by W.S. Hoar and D.J. Randall. Academic Press Inc., New York.

  • Dobson, G. 1986. Metabolic regulation in skeletal muscle during exercise: a fish-mammal comparison. Ph.D. Thesis, University of British Columbia, Vancouver, Canada.

  • Edwards, J.G. and Condorelli, L. 1928. Studies on aglomerular and glomerular kidneys. II. Physiological. Am. J. Physiol. 86: 363–398.

    Google Scholar 

  • Eigen, M. 1964. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. I: Elementary processes. Angew. Chem. 5: 1–19.

    Google Scholar 

  • Evans, D.H. 1977. Further evidence for Na/NH4 exchange in marine teleost fish. J. Exp. Biol. 70: 213–220.

    Google Scholar 

  • Evans, D.H. 1980. Osmotic and ionic regulation by freshwater and marine fishes.In Environmental Physiology of Fishes pp. 93–122. Edited by M.A. Ali. Plenum Publishing Co., New York.

    Google Scholar 

  • Evans, D.H., Kormanik, G.A. and Kransy, E.J. 1979. Mechanisms of ammonia and acid extrusion by the little skate,Raja erinacea. J. Exp. Zool. 208: 431–437.

    Google Scholar 

  • Fauconneau, B. and Luquet, P. 1979. Influence d'une élévation de temperature sur l'évolution de l'aminoacidemie et de l'ammoniemie après le repas chez la truite arc en ciel (Salmo gairdneri R.). Ann. Biol. Anim. Bioch. Biophys. 19: 1063–1079.

    Google Scholar 

  • Florkin, M. and Duchateau, G. 1943. Les formes du système enzymatique de l'uricalyse et l'évolution du catabolisme purique chez les animaux. Arch. Int. Physiol. 53: 267–307.

    Google Scholar 

  • Forster, R.P. and Goldstein, L. 1969. Formation of excretory products.In Fish Physiology, Vol. 1, pp. 313–350. Edited by W.S. Hoar and D.J. Randall. Academic Press Inc., New York.

  • Fraser, D.L., Dyer, W.J., Weinstein, H.M., Dingle, J.R. and Hines, J.A. 1966. Glycolytic metabolites and their distribution at death in the white and red muscle of cod following various degrees of antemortem muscular activity. Can. J. Biochem. 44: 1015–1033.

    Google Scholar 

  • Fromm, P.O. 1963. Studies on renal and extra-renal excretion in a freshwater teleost,Salmo gairdneri. Comp. Biochem. Physiol. 10: 121–128.

    Google Scholar 

  • Fromm, P.O. 1970. Section Ill Effect of ammonia on trout and goldfish.In: Toxic action of water soluble pollutants on freshwater fish. EPA Water Pollution Control Research Series. 18050 DST 12/70 pp. 9–22.

  • Fromm, P.O. and Gillette, J.R. 1968. Effect of ambient ammonia on blood ammonia and nitrogen excretion of rainbow troutSalmo gairdneri). Comp. Biochem. Physiol. 26: 887–896.

    Google Scholar 

  • Girard, J.O. and Payan, P. 1980. Ion exchanges through respiratory and chloride cells in freshwater and seawater adapted teleosteans. Am. J. Physiol. 238: (Regulatory Integrative Comp. Physiol. 7) R260–R268.

  • Goldstein, L., Claiborne, J.B. and Evans, D.H. 1982. Ammonia excretion by the gills of two marine teleost fish: the importance of NH4 + permeance. J. Exp. Zool. 219: 387–395.

    Google Scholar 

  • Goldstein, L. and R.P. Forster. 1961. Source of ammonia excreted by the gills of the marine teleost,Myoxocephalus scorpius. Am. J. Physiol. 200: 1116–1118.

    Google Scholar 

  • Gordon, M.S. 1970. Patterns of nitrogen excretion in amphibious fishes. Urea Kidney, Proc. Int. Colloq. 1968: 238–242.

    Google Scholar 

  • Gregory, R.B. 1977. Synthesis and total excretion of waste nitrogen by fish of thePeriohthahnus (mudskipper) andScartelass families. Comp. Biochem. Physiol. 51A: 33–36.

    Google Scholar 

  • Grollman, A. 1929. The urine of the goosefish (Lophius piscatorius): its nitrogenous constituents with special reference to the presence in it of trimethylamine oxide. J. Biol. Chem. 81: 267–278.

    Google Scholar 

  • Guerin-Ancey, O. 1976a. Etude expérimentale de l'excrétion azotee du bar (Dicentrurchus labrax) en cours de croissance. II. Effects du jeune sur l'excrétion d'ammonia et d'urée. Aquaculture 9: 187–294.

    Google Scholar 

  • Guerin-Ancey, O. 1976b. Etude expérimentale de l'excrétion azotee du bar (Dicentranchus labrax) en cours de croissance. III. Effects du volume et de la concentration initial en ammoniac sur l'excrétion d'ammoniac et d'urée. Aquaculture 9: 253–258.

    Google Scholar 

  • Heisler, N. 1980. Regulation of the acid-base in fishes.In Environmental Physiology of Fishes. pp. 123–162. Edited by M.A. Ali. Plenum Publishing Co., New York.

    Google Scholar 

  • Heisler, N. 1984. Acid-base regulation in fishes.In Fish Physiology, Vol. 10A pp. 315–401. Edited by W.S. Hoar and D.J. Randall. Academic Press Inc., New York.

  • Hillaby, B.A. and Randall, D.J. 1979. Acute ammonia toxicity and ammonia excretion in rainbow trout (Salmo gairdneri). J. Fish. Res. Bd. Canada 36: 621–629.

    Google Scholar 

  • Holeton, G.F., Neumann, P. and Heisler, N. 1983. Branchial ion exchange and acid-base regulation after strenuous exercise in rainbow trout. Resp. Physiol. 51: 303–318.

    Google Scholar 

  • Hughes, G.M. 1984. General anatomy of the gills.In Fish Physiology. Vol. 10A pp. 1–63. Edited by W.S. Hoar and D.J. Randall. Academic Press Inc., New York.

  • Jacobs, M.H. 1940. Some aspects of cell permeability to weak electrolytes. Cold Spring Harbour Sym. Quat. Biol. 8: 30–39.

    Google Scholar 

  • Janssen, R.G. and Randall, D.J. 1975. The effects of changes in pH and PCO2 in blood and water on breathing in rainbow trout,Salmo gairdneri. Resp. Physiol. 25: 235–245.

    Google Scholar 

  • Jeney, G., Jeney, Z., Olah, J., Gyore, K., Nemesok, J. and Boross, L. 1982. Effect of NH3 on catecholamine level in different organs, serum, GOT, GPT, GLDH enzyme activity and ATP level of common carp,Cyprinus carpio L. Acta Bioch. Biophys. Acad. Sci. Hungaricae 17: 79.

    Google Scholar 

  • Karnaky, K.J., Jr., Kinter, L.B., Kinter, W.B. and Stirling, C.E. 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na, K-ATPase in killifish,Fundulus heterclitus, adapted to low and high salininty environments. J. Cell Biol. 70: 157–177.

    Google Scholar 

  • Kern, D.M. 1960. The hydration of carbon dioxide. J. Chem. Ed. 37: 14–23.

    Google Scholar 

  • Kerstetter, T.H., Kirschner, L.B. and Rafuse, D.D. 1970. On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout. J. Gen. Physiol. 56: 342–359.

    Google Scholar 

  • Kirschner, L.B., Greenwald, L. and Kerstetter, T.H. 1973. Effect of amiloride on sodium transport across body surfaces of freshwater animals. Am. J. Physiol. 224: 832–837.

    Google Scholar 

  • Klocke, R.A., Andersson, K.K., Rotman, H.H. and Forster, R.E. 1972. Permeability of human erythrocytes to ammonia and weak acids. Am. J. Physiol. 222: 1004–1013.

    Google Scholar 

  • Kormanik, G.A. and Cameron, J.N. 1981a. Ammonia excretion in animals that breathe water: a review. Mar. Biol. Letters 2: 11–23.

    Google Scholar 

  • Kormanik, G.A. and Cameron, J.N. 1981b. Ammonia excretion in the FW catfish: the role of diffusion. Am. Soc. Zool. 21: 1042.

    Google Scholar 

  • Lacy, E.R. 1983. Histochemical and biological studies of carbonic anhydrase activity in the opercular epithelium of the euryhaline teleost,Fundulus heteroclitus. Am. J. Anat. 166: 19–39.

    Google Scholar 

  • Levi, G., Morisi, G., Coletti, A. and Catanzaro, R. 1974. Free amino acids in fish brain: normal levels and changes upon exposure to high ammonia concentrationsin vivo, and upon incubation of brain slices. Comp. Biochem. Physiol. 49A: 623–636.

    Google Scholar 

  • Lloyd, R. and Herbert, D.W.M. 1960. The influence of carbon dioxide on the toxicity of un-ionized ammonia to rainbow trout (Salmo gairdneri Richardon). Ann. Appl. Biol. 48: 399–404.

    Google Scholar 

  • Maetz, J. 1972. Branchial sodium exchange and ammonia excretion in the goldfish,Carassius auratus. Effects of ammonia-loading and temperature changes. J. Exp. Biol. 56: 601–620.

    Google Scholar 

  • Maetz, J. and Garcia-Romeu, F. 1964. The mechanism of sodium and chloride uptake by the gills of a freshwater fish,Carassius auratus II. Evidence for NH4 +/Na+ and HCO3 /Cl exchanges. J. Gen. Physiol. 47: 1209–1227.

    Google Scholar 

  • Mallery, C.H. 1979. Ammonium stimulated properties of a K+-dependent ATPase inOpsanus beta, a marine teleost with an NH4 +/Na+ exchange pump. Am. Zool. 19: 944.

    Google Scholar 

  • Mathur, G.B. 1967. Anaerobic respiration in a cryprinoid fish.Rasbora daniconius. Nature, Lond. 214: 318–319.

    Google Scholar 

  • McBean, R.L., Neppel, M.J. and Goldstein, L. 1966. Glutaminate dehydrogenase and ammonia production in the eel (Anguilla rostrata). Comp. Biochem. Physiol. 18: 909–920.

    Google Scholar 

  • McDonald, D.S. and Wood, C.M. 1981. Branchial and renal acid and ion fluxes in the rainbow trout at low environmental pH. J. Exp. Biol. 93: 101–118.

    Google Scholar 

  • McWilliams, P.G. and Potts, W.T.W. 1978. The effects of pH and calcium concentrations on gill potentials in the brown trout,Salmo trutta. J. Comp. Physiol. 126: 277–286.

    Google Scholar 

  • Milligan, C.L. and Wood, C.M. 1986. Tissue intracellular acidbase status and the fate of lactate after exhaustive exercise in the rainbow trout. J. Exp. Biol. 123: 123–144.

    Google Scholar 

  • Morii, H., Nishikata, K. and Tamura, O. 1978. Nitrogen excretion of mudskipper fish,Periophthalamus cantonensis andBoleophthalmus pectinirostris in water and on land. Comp. Biochem. Physiol. 60A: 189–193.

    Google Scholar 

  • Olson, K.R. and P.O. Fromm. 1971. Excretion of urea by two teleosts exposed to different concentrations of ambient ammonia. Comp. Biochem. Physiol. 40A: 999–1007.

    Google Scholar 

  • Payan, P. 1978. A study of the Na+/NH4 + exchange across the gill of the perfused head of the trout (Salmo gairdneri). J. Comp. Physiol. 124: 181–188.

    Google Scholar 

  • Payan, P. and Maetz, J. 1973. Branchial sodium transport mechanisms inScyliorhinus canicula: evidence for Na+/NH4 + and Na+/H exchanges and for a role of carbonic anhydrase. J. Exp. Biol. 58: 487–502.

    Google Scholar 

  • Payan, P. and Matty, A.J. 1975. The characteristics of ammonia excretion by a perfused isolated head of trout (Salmo gairdneri): effect of temperature and CO2-free ringer. J. Comp. Physiol. 96: 167–184.

    Google Scholar 

  • Payan, P., Matty, A.J. and Maetz, J. 1975. A study of the sodium pump in the perfused head preparation of the trout (Salmo gairdneri) in freshwater. J. Comp. Physiol. 104: 33–48.

    Google Scholar 

  • Pequin, L. and Serfaty, A. 1963. L'excretion ammoniacale chez un Teleosteen dulcicoleCyprinius carpio L. Comp. Biochem. Physiol. 10: 315–324.

    Google Scholar 

  • Randall, D.J. 1982a. The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol. 100: 275–288.

    Google Scholar 

  • Randall, D.J. 1982b. Blood flow through gills.In Society for Experimental Biology Seminar, Series 16: Gills. pp. 173–191. Edited by D.F. Houlihan, C. Rankin and T.J. Shuttleworth. Cambridge University Press, Cambridge.

    Google Scholar 

  • Randall, D.J., Heisler, N. and Drees, F. 1976. Ventilatory response to hypercapnia in the larger spotted dogfishScyliorhinus stellaris. Am. J. Physiol. 230: 590–594.

    Google Scholar 

  • Randall, D.J., and Wright, P.A. 1986. Ammonia production and excretion in fish. Proceedings of the US-USSR Symposium on Aquatic Toxicity. Borok, Yaraslavl, USSR. EPA/600/9-86/024.

  • Richards, B.D. and Fromm, P.O. 1970. Sodium uptake by isolated perfused gills of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 33: 303–310.

    Google Scholar 

  • Shuttleworth, T.J. and Freeman, R.F. 1974. Factors affecting the net fluxes of ions in the isolated perfused gills of freshwaterAnguilla dieffenbachii. J. Comp. Physiol. 94: 297–307.

    Google Scholar 

  • Smart, G.R. 1978. Investigations of the toxic mechanisms of ammonia to fish gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. J. Fish. Biol. 12: 93–104.

    Google Scholar 

  • Smith, H.W. 1929. The excretion of ammonia and urea by the gills of fish. J. Biol. Chem. 81: P 727–742.

    Google Scholar 

  • Stumm, W. and Morgan, J.J. 1981. Aquatic Chemistry. 2nd Edition. John Wiley and Sons, New York.

    Google Scholar 

  • Sukumaran, N. and Kutty, M.N. 1977. Oxygen consumption and ammonia excretion in the catfishMystus armatus, with special reference to swimming speed and ambient oxygen. Proc. Ind. Acad. Sci. 86B: 195–206.

    Google Scholar 

  • Suyama, M., Koike, J. and Suzuki, K. 1960. Studies on the glycolysis and the formation of ammonia in the muscle and blood of elasmobranchs. J. Tokyo Univ. Fish. 46: 51–60.

    Google Scholar 

  • Thurston, R.V. and Russo, R.C. 1983. Acute toxicity of ammonia to rainbow trout. Trans. Am. Fish. Soc. 112: 696–704.

    Google Scholar 

  • Thurston, R.V., Russo, R.C. and Emerson, K. 1979. Aqueous ammonia equilibrium-tabulation of percent un-ionized ammonia. Environmental Protection Agency Ecological Research Series EPA-600/3-79-091.

  • Thurston, R.V., Russo, R.C. and Vinogradov, G.A. 1981. Ammonia toxicity to fishes: effect of pH on the toxicity of the un-ionized ammonia species. Environ. Sci. Technol. 15: 837–840.

    Google Scholar 

  • Thurston, R.V., Russo, R.C., Luedtke, R.J., Smith, C.E., Meyn, E.L., Chakoumakos, C., Wang, K.C. and Brown, C.J.D. 1984. Chronic toxicity of ammonia to rainbow trout. Trans. Am. Fish. Soc. 113: 56–73.

    Google Scholar 

  • Towle, D.W., Palmer, G.E. and Harris, J.L., III. 1976. Role of gill Na+, K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Biol. 196: 315–322.

    Google Scholar 

  • Towle, D.W. and Taylor, D.D. 1976. Effect of NH4 + and K+ on Na+-transport ATPase activity of blue crab gill. Am. Zool. 16: 224.

    Google Scholar 

  • Turner, J.D., Wood, C.M. and Hobe, H. 1983. Physiological consequences of severe exercise in the inactive benthic flathead sole (Hippoglossoides elassodon): A comparison with the active pelagic rainbow trout (Salmo gairdneri). J. Exp. Biol. 104: 269–288.

    Google Scholar 

  • Ultsch, G.R., Jackson, D.C. and Moalli, R. 1981. Metabolic oxygen conformity among lower vertebrates: the toadfish revisited. J. Comp. Physiol. 142: 439–443.

    Google Scholar 

  • van den Thillart, G. and Kesbeke, F. 1978. Anaerobic production of carbon dioxide and ammonia by goldfish,Carassius auratus (L.). Comp. Biochem. Physiol. 59A: 393–400.

    Google Scholar 

  • van Waarde, A. 1983. Aerobic and anaerobic ammonia production by fish. Comp. Biochem. Physiol. 74B: 675–684.

    Google Scholar 

  • van Waarde, A. and De Wilde-Van Berge Hennegouwen, M. 1982. Nitrogen metabolism in goldfish,Carassius auratus (L.). Pathway of aerobic and anaerobic glutamate oxidation in red muscle and liver mitochondria. Comp. Biochem. Physiol. 72B: 133–136.

    Google Scholar 

  • van Waarde, A., van den Thillart, G. and Dobbe, F. 1982. Anaerobic metabolism in goldfish,Carassius auratus (L.). Influence of anoxia on mass-action ratios of transaminase reactions and levels of ammonia and succinate. J. Comp. Physiol. 147: 53–59.

    Google Scholar 

  • Walton, M.J. and Cowey, C.B. 1977. Aspects of ammoniogenesis in rainbow trout,Salmo gairdneri. Comp. Biochem. Physiol. 57B: 143–149.

    Google Scholar 

  • Watts, R.L. and Watts, D.C. 1974. Nitrogen metabolism in fishes.In Chemical Zoology, Vol. 8 pp. 369–446. Edited by M. Florkin and B.T. Scheer. Academic Press Inc., New York.

  • Webb, J.T. and Brown, G.W., Jr. 1976. Some properties and occurrence of glutamine synthetase in fish. Comp. Biochem. Physiol. 54B: 171–175.

    Google Scholar 

  • Wood, J.D. 1958. Nitrogen excretion in some marine teleosts. Can. J. Biochem. Physiol. 36: 1237–1242.

    Google Scholar 

  • Wright, P.A. and Wood, C.M. 1985. An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockage. J. Exp. Biol. 114: 329–353.

    Google Scholar 

  • Wright, P.A., Heming, T.A. and Randall, D.J. 1986. Downstream pH changes in water flowing over the gills of rainbow trout. J. Exp. Biol. 126: 499–512.

    Google Scholar 

  • Wuhrmann, K. and Woker, H. 1948. Contributions to the toxicology of fishes. II. Experimental investigations on ammonia and hydrocycanic acid poisoning. Translation. Schweiz. Z. hydrol. 11: 210–244.

    Google Scholar 

  • Wuhrmann, K., Zehender, F. and Woker, H. 1947. Biological significance for fisheries of ammonium-ion and ammonium content of flowing bodies of water. Translation. Vierteljahrschrift der Naturf. Gessellschaft in Zürich 92: 198–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, D.J., Wright, P.A. Ammonia distribution and excretion in fish. Fish Physiol Biochem 3, 107–120 (1987). https://doi.org/10.1007/BF02180412

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02180412

Keywords