Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

The plastid aldolase gene fromChlamydomonas reinhardtii: Intron/exon organization, evolution, and promoter structure

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5′ border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3′ acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson LE, Advani VR (1970) Chloroplast and cytoplasmic enzymes. Three distinct isoenzymes associated with the reductive pentose phosphate cycle. Plant Physiol 45: 583–585

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DA, Smith JA, Seideman JG, Strube K (1987) Current protocols in molecular biology. John Wiley, New York

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Brochamp HP, Kula MR (1990) Purification and characterization of a class I fructose 1,6-bisphosphate aldolase fromStaphylococcus carnosus. Appl Microbiol Biotechnol 34: 287–291

    Google Scholar 

  • Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148

    Google Scholar 

  • Chopra S, Dolferus R, Jacob M (1990) Cloning and sequencing of theArabidopsis aldolase gene. Plant Mol Biol 15:517–520

    Google Scholar 

  • Dennis ES, Gerlach WL, Walter JC, Lavin M, Peacock WJ (1988) Anaerobically regulated aldolase of maize. A chimaeric gene? J Mol Biol 202:759–767

    Google Scholar 

  • Doolittle RF (1994) Convergent evolution: the need to be explicit. Trends Biochem Sci 19:15–18

    Google Scholar 

  • Doolitle WF, Stoltzfus A (1993) Genes-in-pieces revisited. Nature 361:403

    Google Scholar 

  • Dorit RL, Schoenbach L, Gilbert W (1990) How big is the universe of exons. Science 250:1377–1381

    Google Scholar 

  • Gamblin SJ, Cooper B, Müller JR, Davies GJ, Littlechild JA, Watson HG (1990) The crystal structure of human muscle aldolase at 3.0 Å resolution. FEBS Lett 262:282–286

    Google Scholar 

  • Gilbert W, Marchionni M, McKnight G (1986) On the antiquity of introns. Cell 46:151–154

    Google Scholar 

  • Go M (1991) Module organization in proteins and exon shuffling. In: Osawa S, Honjo T (eds) Evolution of life. Springer-Verlag, Tokyo, pp 109–122

    Google Scholar 

  • Goldschmidt-Clermont M (1986) The two genes for the small subunit of RuBP carboxylase/oxygenase are closely linked inChlamydomonas reinhardtii. Plant Mol Biol 6:13–21

    Google Scholar 

  • Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphospate carboxylase/oxygenase inChlamydomonas reinhardtii. J Mol Biol 191:421–432

    Google Scholar 

  • Götz F, Fischer S, Schleifer KH (1980) Purification and characterisation of an unusually heat-stable and acid/base-stable class I fructose- 1,6-bisphosphate aldolase fromStaphylococcus aureus. Eur J Biochem 108:295–301

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359

    Google Scholar 

  • Hidaka S, Kadowaki K, Tsutsumi K, Ishikawa K (1990) Fructose bisphosphate aldolase (EC 4.1.2.13) of rice. Nucleic Acids Res 18:3991

    Google Scholar 

  • Joh K, Arai Y, Mukai T, Hori K (1986) Expression of three mRNA species from a single rat aldolase A gene, differing in their 5′ non-coding regions. J Mol Biol 190:401–410

    Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Google Scholar 

  • Katagiri F, Chua N-H (1992) Plant transcription factors: present knowledge and future challenges. Trends Genet 8:22–26

    Google Scholar 

  • Kersanach R, Brinkmann H, Liaud M-F, Zhang D-X, Martin W, Cerff R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367: 387–389

    Google Scholar 

  • Krüger I, Schnarrenberger C (1983) Purification, subunit structure, and immunological comparison of fructose-bisphospate aldolases from spinach and corn leaves. Eur J Biochem 136:101–106

    Google Scholar 

  • Kukita A, Mukai T, Miyata T, Hori K (1988) The structure of brain specific rat aldolase C mRNA and the evolution of aldolase isozyme genes. Eur J Biochem 171:471–478

    Google Scholar 

  • Lebherz HG, Leadbetter MM, Bradshow RA (1984) Isolation and characterization of the cytosolic and chloroplast form of spinach leaf fructose diphosphate aldolase. J Biol Chem 259:1011–1017

    Google Scholar 

  • Liaud ME, Zhang DX, Cerff R (1990) Differential loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci USA 87:8918–8922

    Google Scholar 

  • Maire P, Gauttrons S, Hakim V, Gregori C, Mennecier F, Kahn Å (1987) Characterization of three optional promoters in the 5′-region of the human aldolase Å gene. J Mol Biol 197:425–438

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: Å laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Marsh JJ, Lebherz HG (1992) Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci 17:110–113

    Google Scholar 

  • Martin W, Brinkmann H, Savonna C, Cerff R (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90:8692–8696

    Google Scholar 

  • Motoki K, Kitajima Y, Hori K (1993) Isoenzyme-specific modules on human aldolase Å molecule. J Biol Chem 268:1677–1683

    Google Scholar 

  • Mukai T, Yatsuki H, Arai Y, Joh K, Matsuhashi S, Hori K (1987) Human aldolase B gene. Characterization of the genomic aldolase B gene and analysis of sequence required for multiple polyadenylations. J Biochem 102:1043–1051

    Google Scholar 

  • Palmer JD, Logsdon JM (1991) The recent origins of introns. Curr Opinion Genet Dev 1:470–477

    Google Scholar 

  • Pelzer-Reith B, Penger Å, Schnarrenberger C: (1993) Plant aldolase cDNA and deduced amino acid sequence of the chloroplast and cytosol enzyme from spinach. Plant Mol Biol 21:331–340

    Google Scholar 

  • Proudfoot N (1991) Poly(A) signals. Cell 64:671–674

    Google Scholar 

  • Quigley F, Martin WF, Cerff R (1988) Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85:2672–2676

    Google Scholar 

  • Radzan K, Heinrickson RL, Zurcher-Neely H, Morris PW, Anderson LE (1992) Chloroplast and cytoplasmic enzymes: isolation and sequencing of cDNAs coding for two distinct pea chloroplast aldolases. Arch Biochem Biophys 208:721–727

    Google Scholar 

  • Rochaix JD, Mayfield S, Goldschmidt-Clermont M, Erickson J (1988) Molecular biology ofChlamydomonas In: Shaw CH (ed) Plant molecular biology. IRL Press, Oxford, pp 253–275

    Google Scholar 

  • Rottmann WH, Deselms KR, Niclas J, Camerato T, Holman PS, Green CJ, Tolan DR (1987) The complete amino acid sequence of human aldolase C isozyme derived from genomic clones. Biochemistry 69:137–145

    Google Scholar 

  • Rutter WJ (1964) Evolution of aldolase. Fed Proc 23:1248–1257

    Google Scholar 

  • Schnarrenberger C, Gross W, Pelzer-Reith B, Wiegand S (1992) The evolution of isoenzymes of sugar phosphate metabolism in algae. In: Stabenau H, Tolbert NE (eds) Phylogentic changes in peroxisomes of algae. Phylogeny of plant peroxisomes. University of Oldenburg, Oldenburg, pp 310–329

    Google Scholar 

  • Schnarrenberger C, Pelzer-Reith B, Yatsuki H, Freund S, Jacobshagen S, Hori K (1994) Expression and sequence of the only detectable aldolase inChlamydomonas reinhardtii. Arch Biochem Biophys 313:173–178

    Google Scholar 

  • Shih M-C, Heinrich P, Goodman HM (1988) Intron existence predated the divergence of eukaryotes and prokaryotes. Science 242:1164–1166

    Google Scholar 

  • Sinibaldi R, Mettler I (1992) Intron splicing and intron mediated enhanced expression in monocots. Prog Nucleic Acid Res Mol Biol 42:229–257

    Google Scholar 

  • Stoltzfus Å, Spencer DF, Zuker M, Logsdon JM, Doolitle WF (1994) Testing the exon theory of genes: the evidence from protein structure. Science 265:202–207

    Google Scholar 

  • Surzycki S (1972) Synchronously grown cultures ofChlamydomonas reinhardtii. Methods Enzymol 23:833–841

    Google Scholar 

  • Sygusch J, Beaudry D, Allaire M (1987) Molecular architecture of rabbit skeletal muscle aldolase at 2.7 Å resolution. Proc Natl Acad Sci USA 84:7846–7850

    Google Scholar 

  • Tsutsumi K, Mukai T, Tsutsumi R, Hidaka S, Arai Y, Hori K, Ishikawa K (1985) Structure and genomic organization of the rat aldolase B gene. J Mol Biol 181:153–160

    Google Scholar 

  • Tsutsumi K, Kagaya Y, Hidaka S, Suzuki J, Tokairin Y, Hirai T, Hu D-L, Ihikawa K, Ejiri S (1994) Structural analysis of the chloroplastic and cytoplasmic aldolase-encoding genes implicated the occurrence of multiple loci in rice. Gene 141:215–220

    Google Scholar 

  • Witke C, Götz F (1993) Cloning, sequencing, and characterization of the gene encoding the class I fructose- 1,6-bisphosphate aldolase ofStaphylococcus carnosus. J Bacteriol 175: 7495–7499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelzer-Reith, B., Freund, S., Schnarrenberger, C. et al. The plastid aldolase gene fromChlamydomonas reinhardtii: Intron/exon organization, evolution, and promoter structure. Molec. Gen. Genet. 248, 481–486 (1995). https://doi.org/10.1007/BF02191648

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02191648

Key words