Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Intrageneric relationships of maple trees based on the chloroplast DNA restriction fragment length polymorphisms

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

A maple tree genus,Acer is the largest genus in broad-leaved deciduous trees and contains about 200 species. A delimitation of the genus is clear but the intrageneric classification was controversial because of homoplasies in morphological characters. In this study, a phylogenetic relationship inAcer was inferred based on chloroplast DNA restriction site polymorphisms with 17 restriction endonucleases and previously proposed intrageneric classifications were evaluated. The phylogenetic tree showed that (1) sectionsArguta, Cissifolia, Lithocarpa, Macrantha, Palmata, Spicata, Tataricum, Trifoliata sensu Ogata (1967: Bull. Tokyo Univ. Forests 63: 89–206) were monophyletic groups respectively, (2) sectionsCampestria, Goniocarpa, Platanoidea sensu Ogata (1967) were polyphyletic respectively, and (3) sectionsDistyla andParviflora formed a sister group. An average of estimated nucleotide substitution rates of Acer chloroplast DNA was calculated as 7.9×10−11±1.4×10−11 nucleotide substitutions par site par year, which coincides well with previously reported rates of perennial plants. Divergence eras of eastern Asia and North American species in both sectionsSpicata andRubra were estimated to be late Miocene. In consideration with previous data, multiple migrations and disjunctions are likely to have formed the eastern Asian and North American disjunct distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, D.I. 1960. The evolution of flowering plants.In S. Tax, ed., Evolution after Darwin, vol. 1, University of Chicago Press, Chicago, pp. 227–305.

    Google Scholar 

  • Bousquet, J., Strauss, S.H., Doerksen, A.H. andPrice, R.A. 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc. Natl. Acad. Sci. USA89: 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  • Buvat, R. 1952. Structure, evolution et functionnement du meristeme apical de quelques dicotyledones. Ann. Sci. Nat. Bot. Ser. 11.13: 199–300.

    Google Scholar 

  • Chaney, R.W. 1947. Tertiary centers and migration routes. Ecological Monographs17: 139–148.

    Article  Google Scholar 

  • Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.-L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedroen, M., Gaut, B.S., Jansen, R.K., Kim, K.-J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.-Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn Jr., G.H., Graham, S.W., Barrett, S.C., Dayanandan, S. andAlbert, V.A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard.80: 528–580.

    Article  Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.

    Google Scholar 

  • Cronquist, A. 1988. The evolution and classification of flowering plants, 2nd ed. The New York Botanical Garden, New York.

    Google Scholar 

  • Doebley, J., Durbin, M., Golenberg, E.M., Clegg, M.T. andMa, D.P. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution44: 1097–1108.

    Article  CAS  Google Scholar 

  • Doyle, J.J. andDickerson, E.E. 1987. Preservations of plant samples for DNA restriction endonuclease analysis. Taxon36: 715–722.

    Article  Google Scholar 

  • Fang, W.-P. 1981.Aceraceae In W.-P. Fang,et al., eds., Flora of China, vol. 46 Science Press, Peking, pp. 69–273.

    Google Scholar 

  • Feinberg, A.P. andBogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Addendum Anal. Biochem.132: 6–13.

    Article  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Gadek, P.A., Fernando, E.S., Quinn, C.J., Hoot, S.R., Terrazas, T., Sheahan, M.C. andChase, M.W. 1996. Sapindales: molecular delimitation and intraordinal groups. Amer. J. Bot.83: 802–811.

    Article  Google Scholar 

  • Gaut, B.S., Muse, S.V., Clark, W.D. andClegg, M.T. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Mol. Evol.35: 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Gray, A. 1859. Diagnostic characters of new species of phanerogamous plants collected in Japan by Charles Wright, Botanist of the U.S. North Pacific Exploring Expedition. (Published by request of Captain James Rodgers, Commander of the Expedition.) With observations upon the relations of the Japanese flora to that of North America and to other parts of the northern temperate zone. Memories of the American Academy of Arts.6: 377–452.

    Google Scholar 

  • Hasebe, M. andIwatsuki, K. 1990a. Chloroplast DNA fromAdiantum capillus-veneris L., a fern species (Adiantaceae); clone bank, physical map and unusual gene localization in comparison with angiosperm chloroplast DNA. Curr. Genet.17: 359–364.

    Article  CAS  Google Scholar 

  • Hasebe, M. andIwatsuki, K. 1990b.Adiantum capillusveneris chloroplast DNA clone bank: as useful heterologous probes in the systematics of the leptosporangiate ferns. Amer. Fern. J.80: 20–25.

    Article  Google Scholar 

  • Hoey, M.T. andParks, C.R. 1991. Isozyme divergence between eastern Asian, North American, and Turkish species ofLiquidambar (Hamamelidaceae). Amer. J. Bot.78: 938–947.

    Article  Google Scholar 

  • Jansen, R.K. andPalmer, J.D. 1987. Chloroplast DNA from lettuce andBarnadesia (Asteraceae): structure, gene location, and characterization of a large inversion. Curr. Genet.11: 553–564.

    Article  CAS  Google Scholar 

  • Kohne, D.E. 1970. Evolution of higher-organism DNA. Q. Rev. Biophys.33: 1–48.

    Google Scholar 

  • Koidzumi, G. 1911a. Observations on the Aceraceae. Bot. Mag. Tokyo25: 42–61.

    Google Scholar 

  • Koidzumi, G. 1911b. Observations on the Aceraceae. Bot. Mag. Tokyo25: 97–113.

    Google Scholar 

  • Laird, C.D., McConaughy, B.L. andMcCarthy, B.J. 1969. Rate of fixation of nucleotide substitutions in evolution. Nature224: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N.S., Sang, T., Crawford, D.J., Yeau, S.H. andKim, S.-C. 1996. Molecular divergence between disjunct taxa in eastern Asia and eastern North America. Amer. J. Bot.83: 1373–1378.

    Article  Google Scholar 

  • Li, W.-H. 1993. So, what about the molecular clock hypothesis? Curr. Opin. Genet. Dev.3: 896–901.

    Article  PubMed  CAS  Google Scholar 

  • Momotani, Y. 1962a. Taxonomic study of the genusAcer, with special reference to the seed proteins. II. Analysis of protein. Mem. Coll. Sci. Univ. Kyoto, ser. B.29: 81–102.

    Google Scholar 

  • Momotani, Y. 1962b. Taxonomic study of the genusAcer, with special reference to the seed proteins. III. System ofAceraceae. Mem. Coll. Sci. Univ. Kyoto, ser. B.29: 177–189.

    Google Scholar 

  • Nel, M. andLi, W.-H. 1979. Mathematical models for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA76: 5269–5273.

    Article  Google Scholar 

  • Ogata, K. 1967. A systematic study of the genusAcer. Bull. Tokyo Univ. Forests63: 89–206.

    Google Scholar 

  • Olmstead, R.G. andPalmer, J.D. 1994. Chloroplast DNA systematics: a review of methods and data analysis. Amer. J. Bot.81: 1205–1224.

    Article  CAS  Google Scholar 

  • Palmer, J.D., Sields C.R., Cohen, D.B. andOrton, T.J. 1983. Chloroplast DNA evolution and the origin of amphidiploidBrassica species. Theor. Appl. Genet.65: 181–189.

    Article  CAS  Google Scholar 

  • Palmer, J.D. 1985. Comparative organization of chloroplast genomes. Ann. Rev. Genet.19: 325–354.

    Article  PubMed  CAS  Google Scholar 

  • Parks, C.R. andWendel, J.F. 1990. Molecular divergence between Asian and North American species ofLiriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Amer. J. Bot.77: 1243–1256.

    Article  CAS  Google Scholar 

  • Pax, F. 1902.Aceraceae. Engler's Pflanzenreich IV-163, Ht.8: 1–89.

    Google Scholar 

  • Pojarkova, A.I. 1933. Botanico-geographical survey of the maples in USSR, in connection with the history of the whole genusAcer L. Act. Inst. Bot. Acad. Sci. USSR, ser. 1, fasc.1: 224–374.

    Google Scholar 

  • Qiu, Y.-L., Parks, C.R. andChase, M.W. 1995. Molecular divergence in the eastern Asia-eastern North America disjunct sectionRytidospermum ofMagnolia (Magnoliaceae). Amer. J. Bot.82: 1589–1598.

    Article  Google Scholar 

  • Rehder, A. 1940. Aceraceae.In Manual of cultivated trees and shrubs, 2nd ed., The Macmillan Company, New York, pp. 565–586.

    Google Scholar 

  • Sang, T., Crawford, D.J. andStuessy, T.F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography ofPaeonia (Paeoniaceae). Amer. J. Bot.84: 1120–1136.

    Article  CAS  Google Scholar 

  • Shinozaki K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohta, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamagashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. andSugiura, M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. The EMBO J.5: 2043–2049.

    CAS  Google Scholar 

  • Smith, G.E. andSummers, M.D. 1980. The bi-directional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal. Biochem.109: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Steeves, T.A. andSussex, I.M. 1989. Patterns in plant development, 2nd ed. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Swofford, D.L. 1993. Phylogenetic analysis using parsimony, version 3.1. User's manual. Illinois Natural History Survey, Champaign, IL, USA.

    Google Scholar 

  • Tanai, T. 1978. Taxonomical reinvestigation of the genusAcer L., based on vein architecture of leaves. J. Jap. Bot.53: 65–83.

    Google Scholar 

  • Tiffney, B.H. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arboretum66: 73–94.

    Google Scholar 

  • Tiffney, B.H. 1985b. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arboretum66: 243–273.

    Google Scholar 

  • Vogelmann, J.E. andGastony, G.J. 1987. Electrophoretic enzyme analysis of North American and eastern Asian populations ofAgastache sect.Agastache (Labiatae). Amer. J. Bot.74: 385–393.

    Article  CAS  Google Scholar 

  • Wendel, J.F. andAlbert, V.A. 1992. Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst. Bot.17: 115–143.

    Article  Google Scholar 

  • Wilson, M.A., Gaut, B. andClegg, M.T. 1990. Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol. Biol. Evol.7: 303–314.

    PubMed  CAS  Google Scholar 

  • Wolfe, J.A. 1975. Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and tertiary. Ann. Missouri Bot. Gard.62: 264–279.

    Article  Google Scholar 

  • Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Amer. Scientist66: 694–703.

    Google Scholar 

  • Wolfe, J.A. 1980. Tertiary climatic and floristic relationships at high latitudes in the Northern Hemisphere. Paleogeography Paleoclimatics Paleoecology61: 33–77.

    Article  Google Scholar 

  • Wolfe, J.A. 1981. Vicariance biogeography of angiosperms in relation to paleobotanical data.In G. Nelson and D.E. Rosen eds., Vicariance biogeography, Columbia University Press, New York, pp. 413–435.

    Google Scholar 

  • Wolfe, J.A. andTanal, T. 1987. Systematics, phylogeny, and distribution ofAcer (maples) in the Cenozoic of western North America. Jour. Fac. Sci., Hokkaido University22: 1–246.

    Google Scholar 

  • Wolfe, K.H., Gouy, M., Yang, Y.-W., Sharp, P.M. andLi, W.-H. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA86: 6201–6205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyasu Hasebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasebe, M., Ando, T. & Iwatsuki, K. Intrageneric relationships of maple trees based on the chloroplast DNA restriction fragment length polymorphisms. J. Plant Res. 111, 441–451 (1998). https://doi.org/10.1007/BF02507809

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02507809

Key words