Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

DNA microenvironments and the molecular clock

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A few years ago we presented a stationary Markov model of gene evolution according to which only homologous genes from not too divergent species obeying the condition of being stationary may behave as reliable molecular clocks. A compartmentalized model of the nuclear genome in which the genes are distributed in compartments, the isochores, defined by their G+C content has been proposed recently. We have found that only homologous gene pairs that are stationary, and belong to the same isochore, can be used consistently for the determination of phylogeny and base substitution rate. In particular, for the rodent-human couple, only about half of the homologous gene pairs are stationary. Stationary genes evolve at the third silent codon position with the same velocity independent of the genes and base composition. By contrast, nonstationary genes display apparent rate values (pseudovelocities) that are significantly higher. Our results cast doubt upon recent claims of a large acceleration in the rate of molecular evolution in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardi G, Bernardi GJ (1985) Codon usage and genome composition. J Mol Evol 22:363–365

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    Article  PubMed  CAS  Google Scholar 

  • Bishop MJ, Friday AE (1987) In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press

  • Dover GA (1987) DNA turnover and molecular clock. J Mol Evol 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • EMBL (1988) Release 14.0. European Molecular Biology Laboratory, Heidelberg

    Google Scholar 

  • GenBank (1987) Release 50.0. Bolt, Beranek and Newman, Cambridge MA

    Google Scholar 

  • Gouy M, Gautier C, Attimonelli M, Lanave C, Di Paola G (1985) ACNUC—a portable retrieval system for nucleic acid sequence database: logical and physical designs and usage. CABIOS 1:167–172

    PubMed  CAS  Google Scholar 

  • Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26:24–33

    Article  PubMed  CAS  Google Scholar 

  • Koremberg JR, Rykowski MC (1988) Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400

    Article  Google Scholar 

  • Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  PubMed  CAS  Google Scholar 

  • Lanave C, Preparata G, Saccone C (1985) Mammalian genes as molecular clock? J Mol Evol 21:346–350

    Article  CAS  Google Scholar 

  • Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342

    Article  PubMed  CAS  Google Scholar 

  • Mouchiroud D, gautier C (1988) High codon usage changes in mammalian genes. Mol Biol Evol 5:192–194

    PubMed  CAS  Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    Article  PubMed  CAS  Google Scholar 

  • Preparata G, Saccone C (1987) A simple quantitative model of the molecular clock. J Mol Evol 26:7–15

    Article  PubMed  CAS  Google Scholar 

  • Saccone C, Preparata G, Lanave C (1987) Chance, stochasticity and evolution: the Markov clock. In: Quagliariello E, Bernardi G, Ullmann A (eds) Enzyme adaptation to natural philosophy: heritage from Jacques Monod. Elsevier Science Publishers B.V. (Biomedical Division), pp 159–172

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247

    Article  CAS  Google Scholar 

  • Wu C, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1987) On the molecular evolutionary clock. J Mol Evol 26:34–46

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genetic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccone, C., Pesole, G. & Preparata, G. DNA microenvironments and the molecular clock. J Mol Evol 29, 407–411 (1989). https://doi.org/10.1007/BF02602910

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02602910

Key words