Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Changes in Tumorigenesis- and Angiogenesis-related Gene Transcript Abundance Profiles in Ovarian Cancer Detected by Tailored High Density cDNA Arrays

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Complementary DNA array analysis of gene expression has a potential application for clinical diagnosis of disease processes. However, accessibility, affordability, reproducibility of results, and management of the data generated remain issues of concern. Use of cDNA arrays tailored for studies of specific pathways, tissues, or disease states may render a cost- and time-effective method to define potential hallmark genotype alterations.

Materials and Methods

We produced a 332-membered human cDNA array on nylon membranes tailored for studies of angiogenesis and tumorigenesis in reproductive disease. We tested the system for reproducibility using a novel statistical approach for analysis of array data and employed the arrays to investigate gene expression alterations in ovarian cancer.

Results

Intra-assay analysis and removal of agreement outliers was shown to be a critical step prior to interpretation of cDNA array data. The system revealed highly reproducible results, with intermembrane coefficient of reproducibility of ± 0.98. Comparison of placental and ovarian sample data confirmed expected differences in angiogenic profiles and tissue-specific markers, such as human placental lactogen (hPL). Analysis of expression profiles of five normal ovary and four poorly differentiated serous papillary ovarian adenocarcinoma samples revealed an overall increase in angiogenesis-related markers, including vascular endothelial growth factor (VEGF) and angiopoietin-1 in the diseased tissue. These were accompanied by increases in immune response mediators (e.g. HLA-DR, Ron), apoptotic and neoplastic markers (e.g. BAD protein, b-myb), and novel potential markers of ovarian cancer, such as cofilin, moesin, and neuron-restrictive silencer factor (REST) protein.

Conclusions

In-house production of tailored cDNA arrays, coupled to comprehensive analysis of resulting hybridization profiles, provides an accessible, reliable, and highly effective method of applying array technology to study disease processes. In the ovary, abundance of specific tumor markers, increased macrophage recruitment mediators, a late-stage angiogenesis profile, and the presence of chemoresistance-related markers distinguished normal and advanced ovarian cancer tissue samples. Detection of such parallel changes in pathway- and tissue-specific markers may prove a hallmark ready for application in reproductive disease diagnostic and therapeutic developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Augenlicht LH, Wahrman MZ, Halsey H, Anderson L, Taylor J, Linkin M. (1987) Expression of cloned sequences in biopsies of human colonic tissue and in colonic carcinoma cells induced to differentiate in vitro. Cancer Res. 47: 6017–6021.

    CAS  PubMed  Google Scholar 

  2. Augenlicht LH, Taylor J, Anderson L, Linkin M. (1991) Patterns of gene expression that characterize the colonic mucosa in patients at genetic risk for colonic cancer. Proc. Natl. Acad. Sci. U.S.A. 88: 3286–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinkel D, Segraves R, Sudar D, et. al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20: 207–211.

    Article  CAS  PubMed  Google Scholar 

  4. DeRisi JL, Iyer VR, Brown PO. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.

    Article  CAS  PubMed  Google Scholar 

  5. Schena M, Shalon D, Davis RW, Brown PO. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  CAS  PubMed  Google Scholar 

  6. Ramsay G. (1998) DNA chips: state-of-the art. Nat. Biotechnol. 16: 40–44.

    Article  CAS  PubMed  Google Scholar 

  7. Marshall A, Hodgson J. (1998) DNA chips: an array of possibilities. Nat. Biotechnol. 16: 27–31.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Dougherty ER, Bittner ML. (1997) Biomedical Optics 2: 364–374.

    Article  CAS  PubMed  Google Scholar 

  9. Bertucci F, Bernard K, Loriod B, et al. (1999) Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum. Mol. Genet. 8: 1715–1722.

    Article  CAS  PubMed  Google Scholar 

  10. Higuchi R, Krummel B, Saiki RK. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16: 7351–7367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernard K, Auphan N, Granjeaud S, et al. (1996) Multiplex messenger assay: simultaneous, quantitative measurement of expression of many genes in the context of T cell activation. Nucleic Acids Res. 24: 1435–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bland JM, Altman DG. (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307–310.

    Article  CAS  PubMed  Google Scholar 

  13. International Organisation for Standardization. (1986) ISO 5725 1986-09-15. Precision of Test Methods

  14. Gress TM, Hoheisel JD, Lennon GG, Zehetner G, Lehrach H. (1992) Hybridization fingerprinting of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mamm. Genome. 3: 609–619.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen C, Rocha D, Granjeaud S, et al. (1995) Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29: 207–216.

    Article  CAS  PubMed  Google Scholar 

  16. Gerhold D, Rushmore T, Caskey CT. (1999) DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24: 168–173.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao N, Hashida H, Takahashi N, Misumi Y, Sakaki Y. (1995) High-density cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene expression. Gene 156: 207–213.

    Article  CAS  PubMed  Google Scholar 

  18. Rabinerson D, Kaplan B, Levavi H, Neri A. (1996) The biology of ovarian cancer of epithelial origin. Isr. J. Med. Sci. 32: 1128–1133.

    CAS  PubMed  Google Scholar 

  19. Westermann AM, Bijnen JH, Moolenaar WH, Rodenhuis S. (1997) Growth factors in human ovarian cancer. Cancer Treat. Rev. 23: 113–131

    Article  CAS  PubMed  Google Scholar 

  20. Wimalasena J, Dostal R, Meehan D. (1992) Gonadotropins, estradiol, and growth factors regulate epithelial ovarian cancer cell growth. Gynecol. Oncol. 46: 345–350.

    Article  CAS  PubMed  Google Scholar 

  21. Kim JH, Seibel MM, MacLaughlin DT, et al. (1992) The inhibitory effects of mullerian-inhibiting substance on epidermal growth factor induced proliferation and progesterone production of human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 75: 911–917.

    CAS  PubMed  Google Scholar 

  22. Kooi S, Zhang HZ, Patenia R, Edwards CL, Platsoucas CD, Freedman RS. (1996) HLA class I expression on human ovarian carcinoma cells correlates with T-cell infiltration in vivo and T-cell expansion in vitro in low concentrations of recombinant interleukin-2. Cell Immunol. 174: 116–128.

    Article  CAS  PubMed  Google Scholar 

  23. Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS. (1999) Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J. Immunol. 163: 6251–6260.

    CAS  PubMed  Google Scholar 

  24. Zanders ED, Goulden MG, Kennedy TC, Kempsell KE. (2000) Analysis of immune system gene expression in small rheumatoid arthritis biopsies using a combination of subtractive hybridization and high-density cDNA arrays. J. Immunol. Methods 233: 131–140.

    Article  CAS  PubMed  Google Scholar 

  25. Dietl J, Horny HP, Ruck P, Kaiserling E. (1993) Dysgerminoma of the ovary. An immunohistochemical study of tumor-infiltrating lymphoreticular cells and tumor cells. Cancer 71: 2562–2568.

    Article  CAS  PubMed  Google Scholar 

  26. Snijdewint FG, von Mensdorff-Pouilly S, Karuntu-Wanamarta AH, et al. (1999) Cellular and humoral immune responses to MUC1 mucin and tandem-repeat peptides in ovarian cancer patients and controls. Cancer Immunol. Immunother. 48: 47–55.

    Article  CAS  PubMed  Google Scholar 

  27. Richards ER, Devine PL, Quin RJ, Fontenot JD, Ward BG, McGuckin MA. (1998) Antibodies reactive with the protein core of MUC1 mucin are present in ovarian cancer patients and healthy women. Cancer Immunol. Immunother. 46: 245–252.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. (1999) MUC1 and cancer. Biochim. Biophys. Acta. 1455: 301–313.

    Article  CAS  PubMed  Google Scholar 

  29. Comoglio PM, Boccaccio C. (1996) The HGF receptor family: unconventional signal transducers for invasive cell growth. Genes Cells. 1: 347–354.

    Article  CAS  PubMed  Google Scholar 

  30. Fracchioli S, Katsaros D, Maggiora P, Di Renzo MF, Massobrio M. (1999) Evaluation of Ron and Met proto-oncogene expression in epithelial ovarian tumors. Minerva Ginecol. 51: 359–364.

    CAS  PubMed  Google Scholar 

  31. Marx D, Binder C, Meden H, et al. (1997) Differential expression of apoptosis associated genes bax and bcl-2 in ovarian cancer. Anticancer Res. 17: 2233–2240.

    CAS  PubMed  Google Scholar 

  32. Strobel T, Tai YT, Korsmeyer S, Cannistra SA. (1998) BAD partly reverses paclitaxel resistance in human ovarian cancer cells. Oncogene 17: 2419–2427.

    Article  CAS  PubMed  Google Scholar 

  33. Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW. (1999) Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res. 59: 947–952.

    CAS  PubMed  Google Scholar 

  34. Barletta C, Lazzaro D, Prosperi Porta R, et al. (1992) C-MYB activation and the pathogenesis of ovarian cancer. Eur. J. Gynaecol. Oncol. 13: 53–59.

    CAS  PubMed  Google Scholar 

  35. Keshava N, Gubba S, Tekmal RR. (1999) Overexpression of macrophage colony-stimulating factor (CSF-1) and its receptor, c-fms, in normal ovarian granulosa cells leads to cell proliferation and tumorigenesis. J. Soc. Gynecol. Investig. 6: 41–49.

    CAS  PubMed  Google Scholar 

  36. Terashi K, Oka M, Ohdo S, et al. (1999) Close association between clearance of recombinant human granulocyte colony-stimulating factor (G-CSF) and G-CSF receptor on neutrophils in cancer patients. Antimicrob. Agents Chemother. 43: 21–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inoue M, Kyo S, Fujita M, Enomoto T, Kondoh G. (1994) Coexpression of the c-kit receptor and the stem cell factor in gynecological tumors. Cancer Res. 54: 3049–3053.

    CAS  PubMed  Google Scholar 

  38. Ashman LK. (1999) The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell. Biol. 31: 1037–1051.

    Article  CAS  Google Scholar 

  39. Nakata T, Suzuki K, Fujii J, et al. (1992) High expression of manganese superoxide dismutase in 7,12-dimethylbenz[a]anthracene-induced ovarian cancer and increased serum levels in the tumor-bearing rats. Carcinogenesis 13: 1941–1943.

    Article  CAS  PubMed  Google Scholar 

  40. Nishida T, Sugiyama T, Kataoka A, Tashiro M, Yakushiji M, Ishikawa M. (1993) Serum manganese superoxide dismutase (MnSOD) and histological virulence of ovarian cancer. Asia Oceania J. Obstet. Gynaecol. 19: 427–431.

    Article  CAS  PubMed  Google Scholar 

  41. McLaren J, Prentice A, Charnock-Jones DS, et al. (1996) Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98: 482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Orre M, Rogers PA. (1999) Macrophages and microvessel density in tumors of the ovary. Gynecol. Oncol. 73: 47–50.

    Article  CAS  PubMed  Google Scholar 

  43. Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL. (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190: 430–436.

    Article  CAS  PubMed  Google Scholar 

  44. Maggiora P, Marchio S, Stella MC, et al. (1998) Overexpression of the RON gene in human breast carcinoma. Oncogene. 16: 2927–2933.

    Article  CAS  PubMed  Google Scholar 

  45. Bottazzi B, Ghezzi P, Taraboletti G, et al. (1985) Tumor-derived chemotactic factor(s) from human ovarian carcinoma: evidence for a role in the regulation of macrophage content of neoplastic tissues. Int. J. Cancer. 36: 167–173.

    Article  CAS  PubMed  Google Scholar 

  46. Zavadova E, Loercher A, Verstovsek S, Verschraegen CF, Micksche M, Freedman RS. (1999) The role of macrophages in antitumor defense of patients with ovarian cancer. Hematol. Oncol. Clin. North Am. 13: 135–144, ix.

    Article  CAS  PubMed  Google Scholar 

  47. Bagnato A, Tecce R, Moretti C, Di Castro V, Spergel D, Catt KJ. (1995) Autocrine actions of endothelin-1 as a growth factor in human ovarian carcinoma cells. Clin. Cancer Res. 1: 1059–1066.

    CAS  PubMed  Google Scholar 

  48. Bagnato A, Salani D, Di Castro V, et al. (1999) Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res. 59: 720–727.

    CAS  PubMed  Google Scholar 

  49. Eberle J, Weitmann S, Thieck O, Pech H, Paul M, Orfanos CE. (1999) Downregulation of endothelin B receptor in human melanoma cell lines parallel to differentiation genes. J. Invest. Dermatol. 112: 925–932.

    Article  CAS  PubMed  Google Scholar 

  50. Hanahan D, Weinberg RA. (2000) The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  51. Fidler IJ, Ellis LM. (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79: 185–188.

    Article  CAS  PubMed  Google Scholar 

  52. Folkman J, Watson K, Ingber D, Hanahan D. (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61.

    Article  CAS  PubMed  Google Scholar 

  53. Liotta LA, Kleinerman J, Saidel GM. (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34: 997–1004.

    CAS  PubMed  Google Scholar 

  54. Folkman J. (1990) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82: 4–6.

    Article  CAS  PubMed  Google Scholar 

  55. Bouck N, Stellmach V, Hsu SC. (1996) How tumors become angiogenic. Adv. Cancer Res. 69: 135–174.

    Article  CAS  PubMed  Google Scholar 

  56. Folkman J. (1997) Tumor angiogenesis. In: Holland JF, Bast RC, Morton DL, Frei E, Kufte DW, Weichselbaum (eds.) Cancer Medicine. Williams and Wilkins, Baltimore, pp. 181–204.

    Google Scholar 

  57. Hanahan D, Folkman J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  58. Sowter HM, Corps AN, Evans AL, Clark DE, Charnock-Jones DS, Smith SK. (1997) Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab. Invest. 77: 607–614.

    CAS  PubMed  Google Scholar 

  59. Santin AD, Hermonat PL, Ravaggi A, Cannon MJ, Pecorelli S, Parham GP. (1999) Secretion of vascular endothelial growth factor in ovarian cancer. Eur. J. Gynaecol. Oncol. 20: 177–181.

    CAS  PubMed  Google Scholar 

  60. Boocock CA, Charnock-Jones DS, Sharkey AM, et al. (1995) Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst. 87: 506–516.

    Article  CAS  PubMed  Google Scholar 

  61. Orre M, Rogers PA. (1999) VEGF, VEGFR-1, VEGFR-2, microvessel density and endothelial cell proliferation in tumors of the ovary. Int. J. Cancer 84: 101–108.

    Article  CAS  PubMed  Google Scholar 

  62. Abu-Jawdeh GM, Faix JD, Niloff J, et al. (1996) Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab. Invest. 74: 1105–1115.

    CAS  PubMed  Google Scholar 

  63. Clark DE, Smith SK, He Y, et al. (1998) A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol. Reprod. 59: 1540–1548.

    Article  CAS  PubMed  Google Scholar 

  64. de Visser KE, Kast WM. (1999) Effects of TGF-β on the immune system: implications for cancer immunotherapy. Leukemia 13: 1188–1199.

    Article  PubMed  CAS  Google Scholar 

  65. Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, Kaibara N. (1999) The expression of transforming growth factor-β1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer 86: 1455–1462.

    Article  CAS  PubMed  Google Scholar 

  66. Bristow RE, Baldwin RL, Yamada SD, Korc M, Karlan BY. (1999) Altered expression of transforming growth factor ligands and receptors in primary and recurrent ovarian carcinoma. Cancer 85: 658–668.

    Article  CAS  PubMed  Google Scholar 

  67. Stratmann A, Risau W, Plate KH. (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am. J. Pathol. 153: 1459–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thurston G, Suri C, Smith K, et al. (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511–2514.

    Article  CAS  PubMed  Google Scholar 

  69. Sheibani N, Frazier WA. (1995) Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 92: 6788–6792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iruela-Arispe ML, Vazquez F, Ortega MA. (1999) Antiangiogenic domains shared by thrombospondins and metallospondins, a new family of angiogenic inhibitors. Ann. NY Acad. Sci. 886: 58–66.

    Article  CAS  PubMed  Google Scholar 

  71. Bagavandoss P, Kaytes P, Vogeli G, Wells PA, Wilks JW. (1993) Recombinant truncated thrombospondin-1 monomer modulates endothelial cell plasminogen activator inhibitor 1 accumulation and proliferation in vitro. Biochem. Biophys. Res. Commun. 192: 325–332.

    Article  CAS  PubMed  Google Scholar 

  72. Nathan FE, Hernandez E, Dunton CJ, et al. (1994) Plasma thrombospondin levels in patients with gynecologic malignancies. Cancer 73: 2853–2858.

    Article  CAS  PubMed  Google Scholar 

  73. Oshiba G, Kijima H, Himeno S, et al. (1999) Stromal thrombospondin-1 expression is correlated with progression of esophageal squamous cell carcinomas. Anticancer Res. 19: 4375–4378.

    CAS  PubMed  Google Scholar 

  74. Sang QX. (1998) Complex role of matrix metalloproteinases in angiogenesis. Cell Res. 8: 171–177.

    Article  CAS  PubMed  Google Scholar 

  75. Ferrara N, Davis-Smyth T. (1997) The biology of vascular endothelial growth factor. Endocr. Rev. 18: 4–25.

    Article  CAS  PubMed  Google Scholar 

  76. Folkman J, D’Amore PA. (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155.

    Article  CAS  PubMed  Google Scholar 

  77. Hanahan D. (1997) Signaling vascular morphogenesis and maintenance. Science 277: 48–50.

    Article  CAS  PubMed  Google Scholar 

  78. Gale NW, Yancopoulos GD. (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 13: 1055–1066.

    Article  CAS  PubMed  Google Scholar 

  79. Shweiki D, Neeman M, Itin A, Keshet E. (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc. Natl. Acad. Sci. USA 92: 768–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ferrara N. (1999) Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. 77: 527–543.

    Article  CAS  PubMed  Google Scholar 

  81. Maisonpierre PC, Suri C, Jones PF, et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60.

    Article  CAS  PubMed  Google Scholar 

  82. Davis S, Aldrich TH, Jones PF, et al. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  83. Holash J, Maisonpierre PC, Compton D, et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–1998.

    Article  CAS  PubMed  Google Scholar 

  84. Holash J, Wiegand SJ, Yancopoulos GD. (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362.

    Article  CAS  PubMed  Google Scholar 

  85. Nishimura E, Sasaki K, Maruyama K, Tsukada T, Yamaguchi K. (1996) Decrease in neuronrestrictive silencer factor (NRSF) mRNA levels during differentiation of cultured neuroblastoma cells. Neurosci. Lett. 211: 101–104.

    Article  CAS  PubMed  Google Scholar 

  86. Coulson JM, Fiskerstrand CE, Woll PJ, Quinn JP. (1999) Arginine vasopressin promoter regulation is mediated by a neuron-restrictive silencer element in small cell lung cancer. Cancer Res. 59: 5123–5127.

    CAS  PubMed  Google Scholar 

  87. Au KK, Liong E, Li JY, et al. (1997) Increases in mRNA levels of glucose transporters types 1 and 3 in Ehrlich ascites tumor cells during tumor development. J. Cell. Biochem. 67: 131–135.

    Article  CAS  PubMed  Google Scholar 

  88. North PE, Waner M, Mizeracki A, Mihm MC. (2000) GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum. Pathol. 31: 11–22.

    Article  CAS  PubMed  Google Scholar 

  89. Huang J, Gu M, Chen C. (1997) Expression of glutathione S-transferase-pi in operative specimens as marker of chemoresistance in patients with ovarian cancer. Chung Hua Fu Chan Ko Tsa Chih. 32: 458–461.

    CAS  PubMed  Google Scholar 

  90. Ichikawa T, Masumoto J, Kaneko M, Saida T, Sagara J, Taniguchi S. (1998) Moesin and CD44 expression in cutaneous melanocytic tumors. Br. J. Dermatol. 138: 763–768.

    Article  CAS  PubMed  Google Scholar 

  91. Samstag Y, Eckerskorn C, Wesselborg S, Henning S, Wallich R, Meuer SC. (1994) Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin. Proc. Natl. Acad. Sci. USA 91: 4494–4498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Samstag Y, Dreizler EM, Ambach A, Sczakiel G, Meuer SC. (1996) Inhibition of constitutive serine phosphatase activity in T lymphoma cells results in phosphorylation of pp19/cofilin and induces apoptosis. J. Immunol. 156: 4167–4173.

    CAS  PubMed  Google Scholar 

  93. Sinha P, Hutter G, Kottgen E, Dietel M, Schadendorf D, Lage H. (1999) Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-sigma (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis 20: 2952–2960.

    Article  CAS  PubMed  Google Scholar 

  94. Stanyon CA, Bernard O. (1999) LIM-kinase1. Int. J. Biochem. Cell Biol. 31: 389–394.

    Article  CAS  PubMed  Google Scholar 

  95. Shimoyama Y, Gotoh M, Terasaki T, Kitajima M, Hirohashi S. (1995) Isolation and sequence analysis of human cadherin-6 complementary DNA for the full coding sequence and its expression in human carcinoma cells. Cancer Res. 55: 2206–2211.

    CAS  PubMed  Google Scholar 

  96. Shimazui T, Oosterwijk E, Akaza H, et al. (1998) Expression of cadherin-6 as a novel diagnostic tool to predict prognosis of patients with E-cadherin-absent renal cell carcinoma. Clin. Cancer Res. 4: 2419–2424.

    CAS  PubMed  Google Scholar 

  97. Bussemakers MJ, Van Bokhoven A, Tomita K, Jansen CF, Schalken JA. (2000) Complex cadherin expression in human prostate cancer cells. Int. J. Cancer 85: 446–450.

    Article  CAS  PubMed  Google Scholar 

  98. Maekawa M, Ishizaki T, Boku S, et al. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895–898.

    Article  CAS  PubMed  Google Scholar 

  99. Narumiya S. (1999) Cellular functions & pharmacological manipulations of the small GTPase Rho & Rho effectors. Nippon Yakurigaku Zassh. 114 (Suppl 1): P–5P.

    Google Scholar 

  100. Dax CI, Lottspeich F, Mullner S. (1998) In vitro model system for the identification and characterization of proteins involved in inflammatory processes. Electrophoresis 19: 1841–1847.

    Article  CAS  PubMed  Google Scholar 

  101. Wang K, Gan L, Jeffery E, et al. (1999) Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229: 101–108.

    Article  CAS  PubMed  Google Scholar 

  102. Hall AG. (1999) Glutathione and the regulation of cell death. Adv. Exp. Med. Biol. 457: 199–203.

    Article  CAS  PubMed  Google Scholar 

  103. Sargent JM, Williamson C, Hall AG, Elgie AW, Taylor CG. (1999) Evidence for the involvement of the glutathione pathway in drug resistance in AML. Adv. Exp. Med. Biol. 457: 205–209.

    Article  CAS  PubMed  Google Scholar 

  104. Shiga H, Heath EI, Rasmussen AA, et al. (1999) Prognostic value of p53, glutathione S-transferase pi, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin. Cancer Res. 5: 4097–4104.

    CAS  PubMed  Google Scholar 

  105. Horton JK, Roy G, Piper JT, et al. (1999) Characterization of a chlorambucil-resistant human ovarian carcinoma cell line overexpressing glutathione S-transferase mu. Biochem. Pharmacol. 58: 693–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jayn Wright, Helen Longland, and all in the Technology Development Group at the MRC UK Human Genome Mapping Project Resource Centre at Hinxton, for technical advice and assistance in the production of the arrays; Heidi Sowter and Amanda Evans for tissue collection; and Andrew Sharkey for valuable feedback in preparation of the manuscript. We are particularly grateful to Jim Murray for kind use of laboratory facilities at the Institute of Biotechnology and Patricia Altham for guidance with overviewing the statistical analysis approach. This work was supported partly by grants from the Medical Research Council, U.K. (MRC Program grant no. G9623012). AMM was supported by the Cambridge Commonwealth Trust and ANC, by WellBeing, U.K. (grant no. WOC/94).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Marie Martoglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martoglio, AM., Tom, B.D.M., Starkey, M. et al. Changes in Tumorigenesis- and Angiogenesis-related Gene Transcript Abundance Profiles in Ovarian Cancer Detected by Tailored High Density cDNA Arrays. Mol Med 6, 750–765 (2000). https://doi.org/10.1007/BF03402191

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF03402191

Keywords