Abstract
The recursive relation for the 1-point conformal block on a torus is derived and used to prove the identities between conformal blocks recently conjectured by Poghossian in [1]. As an illustration of the efficiency of the recurrence method the modular invariance of the 1-point Liouville correlation function is numerically analyzed.
Similar content being viewed by others
References
R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [SPIRES].
L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, arXiv:0906.3219 [SPIRES].
N. Wyllard, A N − 1 conformal Toda field theory correlation functions from conformal N = 2SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].
A. Marshakov, A. Mironov and A. Morozov, On combinatorial expansions of conformal blocks, arXiv:0907.3946 [SPIRES].
D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].
A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [SPIRES].
L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, arXiv:0909.0945 [SPIRES].
A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [SPIRES].
A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [SPIRES].
G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, arXiv:0909.4031 [SPIRES].
V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, arXiv:0911.0363 [SPIRES].
A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [SPIRES].
Al. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Sov. Phys. JETP 63 (1986) 1061.
Al. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.
L. Hadasz, Z. Jaskolski and P. Suchanek, Recursion representation of the Neveu-Schwarz superconformal block, JHEP 03 (2007) 032 [hep-th/0611266] [SPIRES].
V.A. Fateev, A.V. Litvinov, A. Neveu and E. Onofri, Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks, J. Phys. A 42 (2009) 304011 [arXiv:0902.1331] [SPIRES].
A. Zamolodchikov, Higher equations of motion in Liouville field theory, Int. J. Mod. Phys. A 19S2 (2004) 510 [hep-th/0312279] [SPIRES].
H. Sonoda, Sewing conformal field theories. 2, Nucl. Phys. B 311 (1988) 417 [SPIRES].
A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 0911.2353
Rights and permissions
About this article
Cite this article
Hadasz, L., Jaskólski, Z. & Suchanek, P. Recursive representation of the torus 1-point conformal block. J. High Energ. Phys. 2010, 63 (2010). https://doi.org/10.1007/JHEP01(2010)063
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2010)063