Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Conformal bootstrap at large charge

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 07 May 2018
  • Volume 2018, article number 43, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Conformal bootstrap at large charge
Download PDF
  • Daniel Jafferis1,
  • Baur Mukhametzhanov1 &
  • Alexander Zhiboedov1 
  • 644 Accesses

  • 70 Citations

  • 5 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider unitary CFTs with continuous global symmetries in d > 2. We consider a state created by the lightest operator of large charge Q ≫ 1 and analyze the correlator of two light charged operators in this state. We assume that the correlator admits a well-defined large Q expansion and, relatedly, that the macroscopic (thermodynamic) limit of the correlator exists. We find that the crossing equations admit a consistent truncation, where only a finite number N of Regge trajectories contribute to the correlator at leading nontrivial order. We classify all such truncated solutions to the crossing. For one Regge trajectory N = 1, the solution is unique and given by the effective field theory of a Goldstone mode. For two or more Regge trajectories N ≥ 2, the solutions are encoded in roots of a certain degree N polynomial. Some of the solutions admit a simple weakly coupled EFT description, whereas others do not. In the weakly coupled case, each Regge trajectory corresponds to a field in the effective Lagrangian.

Article PDF

Download to read the full article text

Similar content being viewed by others

Causality constraints in conformal field theory

Article Open access 17 May 2016

Power corrections to energy flow correlations from large spin perturbation

Article Open access 23 October 2023

Conformal bootstrap in the Regge limit

Article Open access 01 December 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • Field Theory and Polynomials
  • Particle Physics
  • Statistical Physics
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164].

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT operator spectrum at large global charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, goldstone bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP 04 (2017) 059 [arXiv:1610.04495] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A note on inhomogeneous ground states at large global charge, arXiv:1705.05825 [INSPIRE].

  6. O. Loukas, D. Orlando and S. Reffert, Matrix models at large charge, JHEP 10 (2017) 085 [arXiv:1707.00710] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Hasenbusch and E. Vicari, Anisotropic perturbations in three-dimensional O(N )-symmetric vector models, Phys. Rev. B 84 (2011) 125136 [arXiv:1108.0491].

    Article  ADS  Google Scholar 

  8. D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett. 120 (2018) 061603 [arXiv:1707.00711] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

    ADS  Google Scholar 

  13. N. Lashkari, A. Dymarsky and H. Liu, Eigenstate thermalization hypothesis in conformal field theory, J. Stat. Mech. 1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  14. J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.

    Article  ADS  Google Scholar 

  15. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].

    Article  ADS  Google Scholar 

  16. M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].

    Article  ADS  Google Scholar 

  17. L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].

  21. F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

  23. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

  24. A. Monin, Partition function on spheres: how to use zeta function regularization, Phys. Rev. D 94 (2016) 085013 [arXiv:1607.06493] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  27. https://en.wikipedia.org/wiki/Newton’s identities.

  28. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Hellerman, S. Maeda and M. Watanabe, Operator dimensions from moduli, JHEP 10 (2017) 089 [arXiv:1706.05743] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Hellerman and S. Maeda, On the large R-charge expansion in \( \mathcal{N} \) = 2 superconformal field theories, JHEP 12 (2017) 135 [arXiv:1710.07336] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  33. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Harvard University, Cambridge, MA, 20138, U.S.A.

    Daniel Jafferis, Baur Mukhametzhanov & Alexander Zhiboedov

Authors
  1. Daniel Jafferis
    View author publications

    Search author on:PubMed Google Scholar

  2. Baur Mukhametzhanov
    View author publications

    Search author on:PubMed Google Scholar

  3. Alexander Zhiboedov
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Alexander Zhiboedov.

Additional information

ArXiv ePrint: 1710.11161

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafferis, D., Mukhametzhanov, B. & Zhiboedov, A. Conformal bootstrap at large charge. J. High Energ. Phys. 2018, 43 (2018). https://doi.org/10.1007/JHEP05(2018)043

Download citation

  • Received: 15 February 2018

  • Accepted: 18 April 2018

  • Published: 07 May 2018

  • DOI: https://doi.org/10.1007/JHEP05(2018)043

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature