Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Conformal bootstrap with slightly broken higher spin symmetry

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 June 2016
  • Volume 2016, article number 91, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Conformal bootstrap with slightly broken higher spin symmetry
Download PDF
  • Luis F. Alday1 &
  • Alexander Zhiboedov2 
  • 538 Accesses

  • 88 Citations

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider conformal field theories with slightly broken higher spin symmetry in arbitrary spacetime dimensions. We analyze the crossing equation in the double light-cone limit and solve for the anomalous dimensions of higher spin currents γ s with large spin s. The result depends on the symmetries and the spectrum of the unperturbed conformal field theory. We reproduce all known results and make further predictions. In particular we make a prediction for the anomalous dimensions of higher spin currents in the 3d Ising model.

Article PDF

Download to read the full article text

Similar content being viewed by others

Anomalous dimensions of spinning operators from conformal symmetry

Article Open access 23 January 2018

Higher spin conformal geometry in three dimensions and prepotentials for higher spin gauge fields

Article Open access 13 January 2016

The lightcone bootstrap and the spectrum of the 3d Ising CFT

Article Open access 15 March 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Conformity
  • Mathematical Physics
  • Rare variants
  • Spintronics
  • Critical Theory
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  3. L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. Y.S. Stanev, Constraining conformal field theory with higher spin symmetry in four dimensions, Nucl. Phys. B 876 (2013) 651 [arXiv:1307.5209] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in D = 4, arXiv:1307.8092 [INSPIRE].

  7. N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP 10 (2015) 101 [arXiv:1506.02045] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    MathSciNet  Google Scholar 

  12. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  13. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [INSPIRE].

    ADS  Google Scholar 

  16. L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  20. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  Google Scholar 

  23. F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].

  24. D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

    ADS  Google Scholar 

  25. O. Nachtmann, Positivity constraints for anomalous dimensions, Nucl. Phys. B 63 (1973) 237 [INSPIRE].

    Article  ADS  Google Scholar 

  26. C.G. Callan Jr. and D.J. Gross, Bjorken scaling in quantum field theory, Phys. Rev. D 8 (1973) 4383 [INSPIRE].

    ADS  Google Scholar 

  27. K. Lang and W. Rühl, Critical O(N ) vector nonlinear σ-models: a resume of their field structure, hep-th/9311046 [INSPIRE].

  28. K. Lang and W. Rühl, The critical O(N ) σ-model at dimensions 2 < d < 4: fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  30. D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari, Improved high temperature expansion and critical equation of state of three-dimensional Ising-like systems, Phys. Rev. E 60 (1999) 3526 [cond-mat/9905078].

  32. L. Fei, S. Giombi and I.R. Klebanov, Critical O(N ) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

    ADS  Google Scholar 

  33. S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N ) vector models in 4 < d < 6, Phys. Rev. D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large-N , JHEP 06 (2015) 074 [arXiv:1410.4717] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B 607 (2001) 191 [hep-th/0009106] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193 [arXiv:1108.3557] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g**4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V.A. Smirnov, Leading singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills and D instantons in IIB superstring theory, JHEP 08 (1998) 013 [hep-th/9807033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton calculus and the AdS/CFT correspondence in N = 4 superconformal field theory, Nucl. Phys. B 552 (1999) 88 [hep-th/9901128] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Properties of the Konishi multiplet in N =4 SYM theory, JHEP 05 (2001) 042 [hep-th/0104016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. K. Lang and W. Rühl, The critical O(N ) σ-model at dimension 2 < d < 4 and order 1/n 2 : operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. J. Penedones and B. van Rees, unpublished.

  53. J.L. Cardy, Conformal invariance and the Yang-Lee edge singularity in two-dimensions, Phys. Rev. Lett. 54 (1985) 1354 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, U.K.

    Luis F. Alday

  2. Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA, 02138, U.S.A.

    Alexander Zhiboedov

Authors
  1. Luis F. Alday
    View author publications

    Search author on:PubMed Google Scholar

  2. Alexander Zhiboedov
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Alexander Zhiboedov.

Additional information

ArXiv ePrint: 1506.04659v2

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alday, L.F., Zhiboedov, A. Conformal bootstrap with slightly broken higher spin symmetry. J. High Energ. Phys. 2016, 91 (2016). https://doi.org/10.1007/JHEP06(2016)091

Download citation

  • Received: 22 February 2016

  • Accepted: 30 May 2016

  • Published: 16 June 2016

  • DOI: https://doi.org/10.1007/JHEP06(2016)091

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal and W Symmetry
  • Field Theories in Higher Dimensions
  • Higher Spin Symmetry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature