Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A proof of the conformal collider bounds

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 June 2016
  • Volume 2016, article number 111, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
A proof of the conformal collider bounds
Download PDF
  • Diego M. Hofman1,
  • Daliang Li2,
  • David Meltzer3,
  • David Poland3,4 &
  • …
  • Fernando Rejon-Barrera1 
  • 532 Accesses

  • 110 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this paper, we prove that the “conformal collider bounds” originally proposed in [1] hold for any unitary parity-preserving conformal field theory (CFT) with a unique stress tensor in dimensions d ≥ 3. In particular this implies that the ratio of central charges for a unitary 4d CFT lies in the interval \( \frac{31}{18}\ge \frac{a}{c}\ge \frac{1}{3} \). For superconformal theories this is further reduced to \( \frac{3}{2}\ge \frac{a}{c}\ge \frac{1}{2} \). The proof relies only on CFT first principles — in particular, bootstrap methods — and thus constitutes the first complete field theory proof of these bounds. We further elaborate on similar bounds for non-conserved currents and relate them to results obtained recently from deep inelastic scattering.

Article PDF

Download to read the full article text

Similar content being viewed by others

Modular bootstrap revisited

Article Open access 12 September 2018

The 3d stress-tensor bootstrap

Article Open access 27 February 2018

Bound on the central charge of CFTs in large dimension

Article Open access 17 May 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Classical Electrodynamics
  • Convention Theory
  • Field Theory and Polynomials
  • Particle Physics
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  3. S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-Minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  4. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. D. Chowdhury, S. Raju, S. Sachdev, A. Singh and P. Strack, Multipoint correlators of conformal field theories: implications for quantum critical transport, Phys. Rev. B 87 (2013) 085138 [arXiv:1210.5247] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Farnsworth, M.A. Luty and V. Prilepina, Positive energy conditions in 4D conformal field theory, arXiv:1512.01592 [INSPIRE].

  9. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  12. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    Article  ADS  Google Scholar 

  13. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Kulaxizi and A. Parnachev, Energy flux positivity and unitarity in CFTs, Phys. Rev. Lett. 106 (2011) 011601 [arXiv:1007.0553] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal field theories and deep inelastic scattering, arXiv:1601.05453 [INSPIRE].

  16. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, arXiv:1506.04659 [INSPIRE].

  21. G. Vos, Generalized additivity in unitary conformal field theories, Nucl. Phys. B 899 (2015) 91 [arXiv:1411.7941] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  Google Scholar 

  23. A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of conformal blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. D. Li, D. Meltzer and D. Poland, Non-Abelian binding energies from the lightcone bootstrap, JHEP 02 (2016) 149 [arXiv:1510.07044] [INSPIRE].

    Article  ADS  Google Scholar 

  26. L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, arXiv:1510.08091 [INSPIRE].

  27. D. Li, D. Meltzer and D. Poland, Conformal collider physics from the lightcone bootstrap, JHEP 02 (2016) 143 [arXiv:1511.08025] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N ) models, arXiv:1602.04928 [INSPIRE].

  29. T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, arXiv:1509.00014 [INSPIRE].

  30. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE].

  32. J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, arXiv:1509.03612 [INSPIRE].

  33. A.L. Fitzpatrick and J. Kaplan, A quantum correction to chaos, JHEP 05 (2016) 070 [arXiv:1601.06164] [INSPIRE].

    Article  ADS  Google Scholar 

  34. E. Perlmutter, Bounding the space of holographic CFTs with chaos, arXiv:1602.08272 [INSPIRE].

  35. G. Turiaci and H. Verlinde, On CFT and quantum chaos, arXiv:1603.03020 [INSPIRE].

  36. T. Hartman, S. Jain and S. Kundu, A new spin on causality constraints, arXiv:1601.07904 [INSPIRE].

  37. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions, JHEP 03 (2016) 044 [arXiv:1510.02535] [INSPIRE].

    Article  ADS  Google Scholar 

  39. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

    ADS  Google Scholar 

  42. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J.-H. Park, N = 1 superconformal symmetry in four-dimensions, Int. J. Mod. Phys. A 13 (1998) 1743 [hep-th/9703191] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. W.D. Goldberger, W. Skiba and M. Son, Superembedding methods for 4D N = 1 SCFTs, Phys. Rev. D 86 (2012) 025019 [arXiv:1112.0325] [INSPIRE].

    ADS  Google Scholar 

  46. W. Siegel, Embedding versus 6D twistors, arXiv:1204.5679 [INSPIRE].

  47. M. Maio, Superembedding methods for 4d N-extended SCFTs, Nucl. Phys. B 864 (2012) 141 [arXiv:1205.0389] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. S.M. Kuzenko, Conformally compactified Minkowski superspaces revisited, JHEP 10 (2012) 135 [arXiv:1206.3940] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. W.D. Goldberger, Z.U. Khandker, D. Li and W. Skiba, Superembedding methods for current superfields, Phys. Rev. D 88 (2013) 125010 [arXiv:1211.3713] [INSPIRE].

    ADS  Google Scholar 

  50. Z.U. Khandker and D. Li, Superembedding formalism and supertwistors, arXiv:1212.0242 [INSPIRE].

  51. A.L. Fitzpatrick et al., Covariant approaches to superconformal blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Z. Li and N. Su, The most general 4D \( \mathcal{N} \) = 1 superconformal blocks for scalar operators, JHEP 05 (2016) 163 [arXiv:1602.07097] [INSPIRE].

    Article  ADS  Google Scholar 

  54. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    MathSciNet  Google Scholar 

  59. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

    Article  ADS  Google Scholar 

  63. Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].

    ADS  Google Scholar 

  64. S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N} \) = 8 superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].

    Article  ADS  Google Scholar 

  65. C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 2 superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].

    Article  ADS  Google Scholar 

  66. N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional supersymmetric Ising model, Phys. Rev. Lett. 115 (2015) 051601 [arXiv:1502.04124] [INSPIRE].

    Article  ADS  Google Scholar 

  67. N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].

    MathSciNet  Google Scholar 

  68. S.M. Chester et al., Accidental symmetries and the conformal bootstrap, JHEP 01 (2016) 110 [arXiv:1507.04424] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. L. Iliesiu et al., Bootstrapping 3D fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  70. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N ) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

    ADS  Google Scholar 

  72. D. Poland and A. Stergiou, Exploring the minimal 4D \( \mathcal{N} \) = 1 SCFT, JHEP 12 (2015) 121 [arXiv:1509.06368] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: from shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. F. Rejon-Barrera and D. Robbins, Scalar-vector bootstrap, JHEP 01 (2016) 139 [arXiv:1508.02676] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP 02 (2015) 151 [arXiv:1411.7351] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. L. Iliesiu et al., Fermion-scalar conformal blocks, JHEP 04 (2016) 074 [arXiv:1511.01497] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A.C. Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing conformal blocks in 4D CFT, JHEP 08 (2015) 101 [arXiv:1505.03750] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. A.C. Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed conformal blocks in 4D CFT, arXiv:1601.05325 [INSPIRE].

  84. J. Eilers, Geometric twist decomposition off the light-cone for nonlocal QCD operators, hep-th/0608173 [INSPIRE].

  85. J.-F. Fortin and W. Skiba, Conformal bootstrap in embedding space, Phys. Rev. D 93 (2016) 105047 [arXiv:1602.05794] [INSPIRE].

    ADS  Google Scholar 

  86. M.J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1090 GL, Amsterdam, The Netherlands

    Diego M. Hofman & Fernando Rejon-Barrera

  2. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, U.S.A.

    Daliang Li

  3. Department of Physics, Yale University, New Haven, CT, 06511, U.S.A.

    David Meltzer & David Poland

  4. School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, U.S.A.

    David Poland

Authors
  1. Diego M. Hofman
    View author publications

    Search author on:PubMed Google Scholar

  2. Daliang Li
    View author publications

    Search author on:PubMed Google Scholar

  3. David Meltzer
    View author publications

    Search author on:PubMed Google Scholar

  4. David Poland
    View author publications

    Search author on:PubMed Google Scholar

  5. Fernando Rejon-Barrera
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Daliang Li.

Additional information

ArXiv ePrint: 1603.03771

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofman, D.M., Li, D., Meltzer, D. et al. A proof of the conformal collider bounds. J. High Energ. Phys. 2016, 111 (2016). https://doi.org/10.1007/JHEP06(2016)111

Download citation

  • Received: 18 April 2016

  • Accepted: 27 May 2016

  • Published: 20 June 2016

  • DOI: https://doi.org/10.1007/JHEP06(2016)111

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Conformal and W Symmetry
  • Field Theories in Higher Dimensions
  • Nonperturbative Effects
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature