Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A stereoscopic look into the bulk

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 July 2016
  • Volume 2016, article number 129, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
A stereoscopic look into the bulk
Download PDF
  • Bartlomiej Czech1,
  • Lampros Lamprou1,
  • Samuel McCandlish1,
  • Benjamin Mosk1 &
  • …
  • James Sully2 
  • 1159 Accesses

  • 162 Citations

  • 5 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphisminvariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields.

Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.

Article PDF

Download to read the full article text

Similar content being viewed by others

Holographic relations for OPE blocks in excited states

Article Open access 11 March 2019

Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields

Article Open access 03 January 2018

Bulk locality from modular flow

Article Open access 31 July 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Depth Perception
  • Object vision
  • Operator Theory
  • Optical processing and Holography
  • String Theory
  • Integral Transforms and Operational Calculus
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. L. Susskind and N. Toumbas, Wilson loops as precursors, Phys. Rev. D 61 (2000) 044001 [hep-th/9909013] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D 90 (2014) 106005 [arXiv:1409.4473] [INSPIRE].

    ADS  Google Scholar 

  9. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral geometry and holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor networks from kinematic space, arXiv:1512.01548 [INSPIRE].

  11. J. de Boer et al., Holographic de Sitter geometry from entanglement in conformal field theory, Phys. Rev. Lett. 116 (2016) 061602.

    Article  ADS  Google Scholar 

  12. T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].

  13. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. I. Heemskerk, Construction of bulk fields with gauge redundancy, JHEP 09 (2012) 106 [arXiv:1201.3666] [INSPIRE].

    Article  ADS  Google Scholar 

  18. I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Nakayama and H. Ooguri, Bulk locality and boundary creating operators, JHEP 10 (2015) 114 [arXiv:1507.04130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. B. Swingle and M. Van Raamsdonk, Universality of gravity from entanglement, arXiv:1405.2933 [INSPIRE].

  26. B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, to appear.

  27. R.C. Myers, J. de Boer, M.P. Heller and F.M. Haehl, Entanglement, holography and causal diamonds, arXiv:1606.03307 [INSPIRE].

  28. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from entanglement of conformal field theories, Phys. Rev. Lett. 114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Helgason, The Radon transform, volume 5, Springer, Germany (1999).

  33. S. Helgason, Integral geometry and Radon transforms, Springer-Verlag, New York U.S.A. (2011).

    Book  MATH  Google Scholar 

  34. B. Rubin, Radon, cosine and sine transforms on real hyperbolic space, Adv. Math. 170 (2002) 206.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. F. John, The ultrahyperbolic differential equation with four independent variables, Duke Math. J. 4 (06, 1938) 300.

  37. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in Anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].

  39. E. Schrödinger, Expanding universes, Cambridge University Press, Cambridge U.K. (1956).

    MATH  Google Scholar 

  40. M.K. Parikh, I. Savonije and E.P. Verlinde, Elliptic de Sitter space: dS/Z(2), Phys. Rev. D 67 (2003) 064005 [hep-th/0209120] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10 (2014) 178 [arXiv:1407.6429] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].

  43. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

    MathSciNet  Google Scholar 

  44. J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J. Phys. A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  45. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  46. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  47. V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].

    ADS  Google Scholar 

  48. H. Verlinde, Poking holes in AdS/CFT: bulk fields from boundary states, arXiv:1505.05069 [INSPIRE].

  49. M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous multiscale entanglement renormalization ansatz as holographic surface-state correspondence, Phys. Rev. Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. Kabat and G. Lifschytz, Bulk equations of motion from CFT correlators, JHEP 09 (2015) 059 [arXiv:1505.03755] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  51. D. Kabat and G. Lifschytz, Locality, bulk equations of motion and the conformal bootstrap, arXiv:1603.06800 [INSPIRE].

  52. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

  53. V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. L.A. Santaló, Integral geometry and geometric probability, 2nd edition, Cambridge University Press, Cambridge U.K. (2004).

  56. X. Huang and F.-L. Lin, Entanglement renormalization and integral geometry, JHEP 12 (2015) 081 [arXiv:1507.04633] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. G. Solanes, Integral geometry and curvature integrals in hyperbolic space, Universitat Autonoma de Barcelona, Barcelona, Spain (2003).

  58. D. Anninos, De Sitter musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B 42 (1972) 281 [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [Erratum ibid. B 53 (1973) 643] [INSPIRE].

  62. S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant wilson expansion in Euclidean and Minkowski space, Lett. Nuovo Cim. (1971-1985) 5 (2008) 147.

  63. S. Ferrara, A. F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim. (1971-1985) 4 (2008) 115.

  64. D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. D. Anninos, G.S. Ng and A. Strominger, Future boundary conditions in de Sitter space, JHEP 02 (2012) 032 [arXiv:1106.1175] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA, 94305, U.S.A.

    Bartlomiej Czech, Lampros Lamprou, Samuel McCandlish & Benjamin Mosk

  2. Theory Group, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, U.S.A.

    James Sully

Authors
  1. Bartlomiej Czech
    View author publications

    Search author on:PubMed Google Scholar

  2. Lampros Lamprou
    View author publications

    Search author on:PubMed Google Scholar

  3. Samuel McCandlish
    View author publications

    Search author on:PubMed Google Scholar

  4. Benjamin Mosk
    View author publications

    Search author on:PubMed Google Scholar

  5. James Sully
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Benjamin Mosk.

Additional information

ArXiv ePrint: 1604.03110

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czech, B., Lamprou, L., McCandlish, S. et al. A stereoscopic look into the bulk. J. High Energ. Phys. 2016, 129 (2016). https://doi.org/10.1007/JHEP07(2016)129

Download citation

  • Received: 15 June 2016

  • Accepted: 16 July 2016

  • Published: 26 July 2016

  • DOI: https://doi.org/10.1007/JHEP07(2016)129

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature