Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Two-point functions of conformal primary operators in \( \mathcal{N} \) = 1 superconformal theories

  • Open access
  • Published: 07 October 2014
  • Volume 2014, article number 37, (2014)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Two-point functions of conformal primary operators in \( \mathcal{N} \) = 1 superconformal theories
Download PDF
  • Daliang Li1 &
  • Andreas Stergiou1 
  • 526 Accesses

  • 21 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In \( \mathcal{N} \) =1 superconformal theories in four dimensions the form of two-point functions of superconformal multiplets is known up to an overall constant. A superconformal multiplet contains several conformal primary operators, whose two-point function coefficients can be determined in terms of the multiplet’s quantum numbers. In this paper we work out these coefficients in full generality, i.e. for superconformal multiplets that belong to any irreducible representation of the Lorentz group with arbitrary scaling dimension and R- charge. From our results we recover the known unitarity bounds, and also find all shortening conditions, even in non-unitary theories. For the purposes of our computations we have developed a Mathematica package for the efficient handling of expansions in Grassmann variables.

Article PDF

Download to read the full article text

Similar content being viewed by others

The \( \mathcal{N}=2 \) superconformal bootstrap

Article Open access 29 March 2016

R-current three-point functions in 4d \( \mathcal{N} \) = 1 superconformal theories

Article Open access 18 December 2018

Differential operators for superconformal correlation functions

Article Open access 22 April 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Field Theory and Polynomials
  • Functions of a Complex Variable
  • Multilinear Algebra
  • Operator Theory
  • Special Functions
  • Integral Transforms and Operational Calculus
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    Google Scholar 

  2. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Berkooz, R. Yacoby and A. Zait, Bounds on \( \mathcal{N} \) =1 superconformal theories with global symmetries, JHEP 08 (2014) 008 [arXiv:1402.6068] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in Superconformal Theories, JHEP 09 (2011) 071 [arXiv:1107.1721] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland et al., Covariant Approaches to Superconformal Blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J.-H. Park, N=1 superconformal symmetry in four-dimensions, Int. J. Mod. Phys. A 13 (1998) 1743 [hep-th/9703191] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Osborn, N=1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.-H. Park, Superconformal symmetry and correlation functions, Nucl. Phys. B 559 (1999) 455 [hep-th/9903230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S.M. Kuzenko, On compactified harmonic/projective superspace, 5 −D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. W.D. Goldberger, W. Skiba and M. Son, Superembedding Methods for 4d N = 1 SCFTs, Phys. Rev. D 86 (2012) 025019 [arXiv:1112.0325] [INSPIRE].

    ADS  Google Scholar 

  18. W. Siegel, Embedding versus 6D twistors, arXiv:1204.5679 [INSPIRE].

  19. S.M. Kuzenko, Conformally compactified Minkowski superspaces revisited, JHEP 10 (2012) 135 [arXiv:1206.3940] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. W.D. Goldberger, Z.U. Khandker, D. Li and W. Skiba, Superembedding Methods for Current Superfields, Phys. Rev. D 88 (2013) 125010 [arXiv:1211.3713] [INSPIRE].

    ADS  Google Scholar 

  21. Z.U. Khandker and D. Li, Superembedding Formalism and Supertwistors, arXiv:1212.0242 [INSPIRE].

  22. J.-F. Fortin, K. Intriligator and A. Stergiou, Superconformally Covariant OPE and General Gauge Mediation, JHEP 12 (2011) 064 [arXiv:1109.4940] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. J.-F. Fortin and A. Stergiou, Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation, Nucl. Phys. B 873 (2013) 92 [arXiv:1212.2202] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. P. Kumar, D. Li, D. Poland and A. Stergiou, OPE Methods for the Holomorphic Higgs Portal, JHEP 08 (2014) 016 [arXiv:1401.7690] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Flato and C. Fronsdal, Representations of Conformal Supersymmetry, Lett. Math. Phys. 8 (1984) 159 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. V.K. Dobrev and V.B. Petkova, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B 162 (1985) 127 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, 1992.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Yale University, New Haven, CT, 06520, United Kingdom

    Daliang Li & Andreas Stergiou

Authors
  1. Daliang Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Andreas Stergiou
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Daliang Li.

Additional information

ArXiv ePrint: 1407.6354

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Stergiou, A. Two-point functions of conformal primary operators in \( \mathcal{N} \) = 1 superconformal theories. J. High Energ. Phys. 2014, 37 (2014). https://doi.org/10.1007/JHEP10(2014)037

Download citation

  • Received: 29 August 2014

  • Accepted: 18 September 2014

  • Published: 07 October 2014

  • DOI: https://doi.org/10.1007/JHEP10(2014)037

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry and Duality
  • Superspaces
  • Conformal and W Symmetry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature