Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Abnormal change of paravertebral muscle in adult degenerative scoliosis and its association with bony structural parameters

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

While many studies have explored the association between paravertebral muscle (PVM) change and low back pain/lumbar spinal stenosis, little is known about PVM change in adult degenerative scoliosis (ADS). The present study explored the PVM change in ADS and investigated its association with bony structural parameters.

Methods

We evaluated 78 patients in ADS without radiculopathy (ADS group) and 65 healthy persons without degenerative lumbar diseases (control group). Percentage of fat infiltration area (%FIA) of multifidus muscle at L1 to S1 disk level was measured by MRI, using ImageJ software. Lumbar scoliosis Cobb’s angle, lumbar lordotic angle, lateral vertebral translation, and apical vertebral rotation were recorded in ADS group, and relationship between PVM change and these factors was analyzed.

Results

In the control group, the mean %FIA of multifidus muscle was not significantly different between the bilateral sides at all levels (P > 0.05). In the ADS group, the mean %FIA was significantly higher on the concave side than the convex side at all levels (P < 0.05). Asymmetric degree of multifidus muscle change was 8.55% ± 4.91%, which was positively correlated with lumbar scoliosis Cobb’s angle, lateral vertebral translation, and apical vertebral rotation (0 < r < 1, P < 0.05), but negatively weak-correlated with lumbar lordotic angle (− 1 < r < 0, P < 0.05).

Conclusions

Asymmetric PVM change in ADS is more often seen on the concave side, which is positive to evaluate the progression of scoliosis. Its asymmetric degree increases with progression of lumbar scoliosis Cobb’s angle and decreased lumbar lordotic angle. Apical vertebral rotation and lateral vertebral translation can aggravate the asymmetric degree.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PVM:

Paravertebral muscle

MRI:

Magnetic resonance image

CT:

Computerized tomography

EMG:

Needle electromyogram

T1WI:

T1-weighted images

T2WI:

T2-weighted images

TR:

Repetition time

TE:

Echo time

FIA:

Fat infiltration area

CSA:

Cross-sectional area

ADS:

Adult degenerative scoliosis

DLK:

Degenerative lumbar kyphosis

AIS:

Adolescent idiopathic scoliosis

IS:

Idiopathic scoliosis

LBP:

Low back pain

References

  1. Aebi M (2005) The adult scoliosis. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. Eur Spine J 14(10):925–948. https://doi.org/10.1007/s00586-005-1053-9

    Article  Google Scholar 

  2. Fu KM, Rhagavan P, Shaffrey CI, Chernavvsky DR, Smith JS (2011) Prevalence, severity, and impact of foraminal and canal stenosis among adults with degenerative scoliosis. Neurosurgery 69(6):1181–1187. https://doi.org/10.1227/NEU.0b013e31822a9aeb

    Article  PubMed  Google Scholar 

  3. Bess S, Boachie-Adjei O, Burton D, Cunningham M, Shaffrey C, Shelokov A, Hostin R, Schwab F, Wood K, Akbarnia B (2009) Pain and disability determine treatment modality for older patients with adult scoliosis, while deformity guides treatment for younger patients. Spine 34(20):2186–2190. https://doi.org/10.1097/BRS.0b013e3181b05146

    Article  PubMed  Google Scholar 

  4. Jimbo S, Kobayashi T, Aono K, Atsuta Y, Matsuno T (2012) Epidemiology of degenerative lumbar scoliosis: a community-based cohort study. Spine 37(20):1763–1770. https://doi.org/10.1097/BRS.0b013e3182575eaa

    Article  PubMed  Google Scholar 

  5. Silva FE, Lenke LG (2010) Adult degenerative scoliosis: evaluation and management. Neurosurg Focus 28(3):E1. https://doi.org/10.3171/2010.1.focus09271

    Article  PubMed  Google Scholar 

  6. Kang CH, Shin MJ, Kim SM, Lee SH, Lee CS (2007) MRI of paraspinal muscles in lumbar degenerative kyphosis patients and control patients with chronic low back pain. Clin Radiol 62(5):479–486. https://doi.org/10.1016/j.crad.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Hyun SJ, Bae CW, Lee SH, Rhim SC (2016) Fatty degeneration of the paraspinal muscle in patients with degenerative lumbar kyphosis: a new evaluation method of quantitative digital analysis using MRI and CT scan. Clin Spine Surg 29(10):441–447. https://doi.org/10.1097/BSD.0b013e3182aa28b0

    Article  PubMed  Google Scholar 

  8. Jiang J, Meng Y, Jin X, Zhang C, Zhao J, Wang C, Gao R, Zhou X (2017) Volumetric and fatty infiltration imbalance of deep paravertebral muscles in adolescent idiopathic scoliosis. Med Sci Monitor Int Med J Exp Clin Res 23:2089–2095

    Article  Google Scholar 

  9. Lee JC, Cha JG, Kim Y, Kim YI, Shin BJ (2008) Quantitative analysis of back muscle degeneration in the patients with the degenerative lumbar flat back using a digital image analysis: comparison with the normal controls. Spine 33(3):318–325. https://doi.org/10.1097/BRS.0b013e318162458f

    Article  PubMed  Google Scholar 

  10. Wu HL, Ding WY, Shen Y, Zhang YZ, Guo JK, Sun YP, Cao LZ (2012) Prevalence of vertebral endplate modic changes in degenerative lumbar scoliosis and its associated factors analysis. Spine 37(23):1958–1964. https://doi.org/10.1097/BRS.0b013e31825bfb85

    Article  PubMed  Google Scholar 

  11. Kohno S, Ikeuchi M, Taniguchi S, Takemasa R, Yamamoto H, Tani T (2011) Factors predicting progression in early degenerative lumbar scoliosis. J Orthop Surg (Hong Kong) 19(2):141–144. https://doi.org/10.1177/230949901101900202

    Article  Google Scholar 

  12. Ranson CA, Burnett AF, Kerslake R, Batt ME, O’Sullivan PB (2006) An investigation into the use of MR imaging to determine the functional cross sectional area of lumbar paraspinal muscles. Eur Spine J Off Pub Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 15(6):764–773. https://doi.org/10.1007/s00586-005-0909-3

    Article  Google Scholar 

  13. Shafaq N, Suzuki A, Matsumura A, Terai H, Toyoda H, Yasuda H, Ibrahim M, Nakamura H (2012) Asymmetric degeneration of paravertebral muscles in patients with degenerative lumbar scoliosis. Spine 37(16):1398–1406. https://doi.org/10.1097/BRS.0b013e31824c767e

    Article  PubMed  Google Scholar 

  14. Barker KL, Shamley DR, Jackson D (2004) Changes in the cross-sectional area of multifidus and psoas in patients with unilateral back pain: the relationship to pain and disability. Spine 29(22):E515–E519

    Article  PubMed  Google Scholar 

  15. McGill SM, Grenier S, Kavcic N, Cholewicki J (2003) Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol 13(4):353–359

    Article  Google Scholar 

  16. Hansen L, de Zee M, Rasmussen J, Andersen TB, Wong C, Simonsen EB (2006) Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine 31(17):1888–1899. https://doi.org/10.1097/01.brs.0000229232.66090.58

    Article  PubMed  Google Scholar 

  17. Guo X, Zhang X, Ding W, Yang D, Ma L, Xie D, Wang H, Wang H, Lu K, Yang S (2014) Imaging study of paravertebral muscle degeneration in degenerative lumbar instability. Zhonghua wai ke za zhi [Chin J Surg] 52(8):571–575

    Google Scholar 

  18. Kalichman L, Carmeli E, Been E (2017) The Association between imaging parameters of the paraspinal muscles. Spinal Degener Low Back Pain 2017:2562957. https://doi.org/10.1155/2017/2562957

    Article  Google Scholar 

  19. Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, Bourgois J, Dankaerts W, De Cuyper HJ (2001) Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med 35(3):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kliziene I, Sipaviciene S, Klizas S, Imbrasiene D (2015) Effects of core stability exercises on multifidus muscles in healthy women and women with chronic low-back pain. J Back Musculoskel Rehabil 28(4):841–847. https://doi.org/10.3233/bmr-150596

    Article  Google Scholar 

  21. Deckers K, De Smedt K, Mitchell B, Vivian D, Russo M, Georgius P, Green M, Vieceli J, Eldabe S, Gulve A, van Buyten JP, Smet I, Mehta V, Ramaswamy S, Baranidharan G, Sullivan R, Gassin R, Rathmell J, Gilligan C (2017) New therapy for refractory chronic mechanical low back pain-restorative neurostimulation to activate the lumbar multifidus: one year results of a prospective multicenter clinical trial. Neuromodul J Int Neuromod Soc. https://doi.org/10.1111/ner.12741

    Article  Google Scholar 

  22. Russo M, Deckers K, Eldabe S, Kiesel K, Gilligan C, Vieceli J, Crosby P (2017) Muscle control and non-specific chronic low back pain. Neuromod J Int Neuromod Soc. https://doi.org/10.1111/ner.12738

    Article  Google Scholar 

  23. Tunnell J (2009) Needle EMG response of lumbar multifidus to manipulation in the presence of clinical instability. J Manual Manip Ther 17(1):E19–E24. https://doi.org/10.1179/jmt.2009.17.1.19E

    Article  Google Scholar 

  24. Hu ZJ, He J, Zhao FD, Fang XQ, Zhou LN, Fan SW (2011) An assessment of the intra- and inter-reliability of the lumbar paraspinal muscle parameters using CT scan and magnetic resonance imaging. Spine 36(13):E868–E874. https://doi.org/10.1097/BRS.0b013e3181ef6b51

    Article  PubMed  Google Scholar 

  25. Murakami N, Obata K, Abe Y, Oto Y, Kido Y, Itabashi H, Tsuchiya T, Tanaka Y, Yoshino A, Nagai T (2012) Scoliosis in Prader–Willi syndrome: effect of growth hormone therapy and value of paravertebral muscle volume by CT in predicting scoliosis progression. Am J Med Gen Part A 158(7):1628–1632. https://doi.org/10.1002/ajmg.a.35429

    Article  CAS  Google Scholar 

  26. Kiesel KB, Butler RJ, Duckworth A, Halaby T, Lannan K, Phifer C, DeLeal C, Underwood FB (2012) Experimentally induced pain alters the EMG activity of the lumbar multifidus in asymptomatic subjects. Manual Therapy 17(3):236–240. https://doi.org/10.1016/j.math.2012.01.008

    Article  PubMed  Google Scholar 

  27. Kalichman L, Hodges P, Li L, Guermazi A, Hunter DJ (2010) Changes in paraspinal muscles and their association with low back pain and spinal degeneration: cT study. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 19(7):1136–1144. https://doi.org/10.1007/s00586-009-1257-5

    Article  Google Scholar 

  28. Chon J, Kim HS (2017) Asymmetric atrophy of paraspinal muscles in patients with chronic unilateral lumbar radiculopathy. Ann Rehab Med 41(5):801–807. https://doi.org/10.5535/arm.2017.41.5.801

    Article  Google Scholar 

  29. Fortin M, Videman T, Gibbons LE, Battie MC (2014) Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc 46(5):893–901. https://doi.org/10.1249/mss.0000000000000179

    Article  CAS  PubMed  Google Scholar 

  30. Bulcke JA, Termote JL, Palmers Y, Crolla D (1979) Computed tomography of the human skeletal muscular system. Neuroradiology 17(3):127–136

    CAS  PubMed  Google Scholar 

  31. Kalichman L, Klindukhov A, Li L, Linov L (2016) Indices of paraspinal muscles degeneration: reliability and association with facet joint osteoarthritis: feasibility study. Clin Spine Surg 29(9):465–470. https://doi.org/10.1097/BSD.0b013e31828be943

    Article  PubMed  Google Scholar 

  32. Stokes M, Rankin G, Newham DJ (2005) Ultrasound imaging of lumbar multifidus muscle: normal reference ranges for measurements and practical guidance on the technique. Manual Therapy 10(2):116–126. https://doi.org/10.1016/j.math.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  33. Hyun JK, Lee JY, Lee SJ, Jeon JY (2007) Asymmetric atrophy of multifidus muscle in patients with unilateral lumbosacral radiculopathy. Spine 32(21):E598–E602. https://doi.org/10.1097/BRS.0b013e318155837b

    Article  PubMed  Google Scholar 

  34. Battie MC, Niemelainen R, Gibbons LE, Dhillon S (2012) Is level- and side-specific multifidus asymmetry a marker for lumbar disc pathology? Spine J Off J North Am Spine Soc 12(10):932–939. https://doi.org/10.1016/j.spinee.2012.08.020

    Article  Google Scholar 

  35. Goubert D, Oosterwijck JV, Meeus M, Danneels L (2016) Structural changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician 19(7):E985–E999

    PubMed  Google Scholar 

  36. Butterworth TR Jr, James C (1969) Electromyographic studies in idiopathic scoliosis. South Med J 62(8):1008–1010

    Article  PubMed  Google Scholar 

  37. Fidler MW, Jowett RL (1976) Muscle imbalance in the aetiology of scoliosis. J Bone Joint Surg Br 58(2):200–201

    Article  CAS  PubMed  Google Scholar 

  38. Zoabli G, Mathieu PA, Aubin CE (2007) Back muscles biometry in adolescent idiopathic scoliosis. Spine J Off J North Am Spine Soc 7(3):338–344. https://doi.org/10.1016/j.spinee.2006.04.001

    Article  Google Scholar 

  39. Chan YL, Cheng JC, Guo X, King AD, Griffith JF, Metreweli C (1999) MRI evaluation of multifidus muscles in adolescent idiopathic scoliosis. Pediatr Radiol 29(5):360–363. https://doi.org/10.1007/s002470050607

    Article  CAS  PubMed  Google Scholar 

  40. Reuber M, Schultz A, McNeill T, Spencer D (1983) Trunk muscle myoelectric activities in idiopathic scoliosis. Spine 8(5):447–456

    Article  CAS  PubMed  Google Scholar 

  41. Sapkas G, Efstathiou P, Badekas AT, Antoniadis A, Kyratzoulis J, Meleteas E (1996) Radiological parameters associated with the evolution of degenerative scoliosis. Bull Hosp Joint Dis NY 55(1):40–45

    CAS  Google Scholar 

  42. Easwar TR, Hong JY, Yang JH, Suh SW, Modi HN (2011) Does lateral vertebral translation correspond to Cobb angle and relate in the same way to axial vertebral rotation and rib hump index? A radiographic analysis on idiopathic scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 20(7):1095–1105. https://doi.org/10.1007/s00586-011-1702-0

    Article  CAS  Google Scholar 

  43. Kotwicki T, Napiontek M, Nowakowski A (2006) Transverse plane of apical vertebra of structural thoracic curve: vertebra displacement versus vertebral deformation. Stud Health Technol Inform 123:164–168

    PubMed  Google Scholar 

  44. Kotwicki T, Napiontek M (2008) Intravertebral deformation in idiopathic scoliosis: a transverse plane computer tomographic study. J Pediatr Orthop 28(2):225–229. https://doi.org/10.1097/BPO.0b013e3181647c4a

    Article  PubMed  Google Scholar 

  45. Asher MA, Cook LT (1995) The transverse plane evolution of the most common adolescent idiopathic scoliosis deformities. A cross-sectional study of 181 patients. Spine 20(12):1386–1391

    Article  CAS  PubMed  Google Scholar 

  46. Cheung J, Halbertsma JP, Veldhuizen AG, Sluiter WJ, Maurits NM, Cool JC, van Horn JR (2005) A preliminary study on electromyographic analysis of the paraspinal musculature in idiopathic scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 14(2):130–137. https://doi.org/10.1007/s00586-004-0780-7

    Article  Google Scholar 

  47. Zetterberg C, Bjork R, Ortengren R, Andersson GB (1984) Electromyography of the paravertebral muscles in idiopathic scoliosis. Measurements of amplitude and spectral changes under load. Acta orthopaedica Scandinavica 55(3):304–309

    Article  CAS  PubMed  Google Scholar 

  48. Zapata KA, Wang-Price SS, Sucato DJ, Dempsey-Robertson M (2015) Ultrasonographic measurements of paraspinal muscle thickness in adolescent idiopathic scoliosis: a comparison and reliability study. Pediatr Phys Ther Off Publ Sect Pediatr Am Phys Therapy Assoc 27(2):119–125. https://doi.org/10.1097/pep.0000000000000131

    Article  Google Scholar 

  49. Murata Y, Takahashi K, Hanaoka E, Utsumi T, Yamagata M, Moriya H (2002) Changes in scoliotic curvature and lordotic angle during the early phase of degenerative lumbar scoliosis. Spine 27(20):2268–2273. https://doi.org/10.1097/01.brs.0000029261.05130.1a

    Article  PubMed  Google Scholar 

  50. Chun SW, Lim CY, Kim K, Hwang J, Chung SG (2017) The relationships between low back pain and lumbar lordosis: a systematic review and meta-analysis. Spine J Off J North Am Spine Soc 17(8):1180–1191. https://doi.org/10.1016/j.spinee.2017.04.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Ding.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 2623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, D., Zhang, J., Ding, W. et al. Abnormal change of paravertebral muscle in adult degenerative scoliosis and its association with bony structural parameters. Eur Spine J 28, 1626–1637 (2019). https://doi.org/10.1007/s00586-019-05958-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00586-019-05958-7

Keywords

Profiles

  1. Sidong Yang