Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Here we present the first report on the taxonomic diversity of the microbial communities of the saline desert of the Great Rann of Kutch, Gujarat, India, using a metagenomic approach. Seven samples, differing in salinity levels and covering different seasons, were analysed to investigate the dynamics of microbial communities in relation to salinity and season. Metagenomic data generated using whole metagenome sequencing revealed that despite its very high salinity (4.11–30.79 %), the saline desert’s microbiota had a rich microbial diversity that included all major phyla. Notably, 67 archaeal genera, representing more than 60 % of all known archaeal genera, were present in this ecosystem. A strong positive correlation (0.85) was observed between the presence of the extremely halophilic bacterium Salinibacter and salinity level. Taxonomic and functional comparisons of the saline desert metagenome with those of other publicly available metagenomes (i.e. sea, hypersaline lagoon, solar saltern, brine, hot desert) was carried out. The microbial community of the Kutch was found to be unique yet more similar to the sea biomes followed by hypersaline lagoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in Sonoran Desert Soils. Appl Environ Microbiol 78:7527–7537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263

    Article  CAS  Google Scholar 

  • Biswas SK, Deshpande SV (1970) Geological and Tectonic Maps of Kutch. Bull ONGC 7:115–123

    Google Scholar 

  • Brown SP, Callaham MA, Oliver AK, Jumpponen A (2013) Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem. FEMS Microbiol Ecol 86:557–566

    Article  CAS  PubMed  Google Scholar 

  • Catford JA, Daehler CC, Murphy HT et al (2012) The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect Plant Ecol Evol Syst 14:231–241

    Article  Google Scholar 

  • Caton TM (2004) Halotolerant aerobic heterotrophic bacteria from the great salt plains of Oklahoma. Microb Ecol 48:449–462

    Article  CAS  PubMed  Google Scholar 

  • Delmont TO, Prestat E, Keegan KP et al (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6:1677–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69

    Article  CAS  PubMed  Google Scholar 

  • Denslow JS (1985) Disturbance-mediated coexistence of species. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp 307–323

    Google Scholar 

  • Dong HL, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51:65–82

    Article  CAS  PubMed  Google Scholar 

  • Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243

    Article  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109:21390–21395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasol JM, Casamayor EO, Joint I et al (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206

    Article  Google Scholar 

  • Ghai R, Pašić L, Fernández AB et al (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Gomariz M, Martínez-García M, Santos F et al (2015) From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J 9:16–31

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Hammer Q, Haper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hollister EB, Engledow AS, Hammett AJM, Provin TL, Wilkinson HH, Gentry TJ (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838

    Article  CAS  PubMed  Google Scholar 

  • Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono lake, ameromictic soda lake in California. Appl Environ Microbiol 69:1030–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 7:1658–1671

    Article  Google Scholar 

  • Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of lake Chaka, an athalassohaline lake in Northwestern China. Appl Environ Microbiol 72:3832–3845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keshri J, Mishra A, Jha B (2013) Microbial population index and community structure in saline–alkaline soil using gene targeted metagenomics. Microbiol Res 168:165–173

    Article  CAS  PubMed  Google Scholar 

  • Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol 63:1826–1837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klieve AV, Hennessy D, Ouwerkerk D, Forster RJ, Mackie RI, Attwood GT (2003) Establishing populations of Megasphaerae lsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 95:621–630

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York, pp 125–175

    Google Scholar 

  • Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 11:114–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodriguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genom 7:171

    Article  Google Scholar 

  • Ley RE, Harris JK, Wilcox J et al (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-López A, Yarza P, Richter M, Suárez-Suárez A, Antón J, Niemann H, Rosselló-Móra R (2010) Extremely halophilic microbial communities in anaerobic sediments from a solar saltern. Environ Microbiol Rep 2:258–271

    Article  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen IMA, Chu K et al (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGenity TJ, Gramain A (2010) Cultivation of halophilic hydrocarbon degraders. In: Handbook of hydrocarbon and lipid microbiology, pp 3847–3854

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  CAS  PubMed  Google Scholar 

  • McGinley M (2008) Rann of Kutch seasonal salt marsh. In: Clevel CJ (eds) Encyclopedia of earth. Environmental Information Coalition, National Council for Science and the Environment, Washington DC

  • Mesbah NM, Abou-El-Ela SH, Wiegel J (2008) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617

    Article  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moune S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130

    Article  CAS  PubMed  Google Scholar 

  • Mutlu MB, Martínez-García M, Santos F, Peña A, Guven K, Antón J (2008) Prokaryotic diversity in Tuzlake, a hypersaline environment in inland Turkey. FEMS Microbiol Ecol 65:474–483

    Article  CAS  PubMed  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA et al (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholson CA, Fathepure BZ (2005) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245:257–262

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Halophilic Microorganisms and Their Environments. Kluwer Academic Press, Boston, p 575

    Book  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398

    Article  CAS  Google Scholar 

  • Rhoades JD (1982) Soluble salts. In: Page AL, Miller RH, Keeney DR (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. Agronomy No. 9(2). Madison (WI) American Society of Agronomy, pp 167–178

  • Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed Central  PubMed  Google Scholar 

  • Schofield RK, Taylor AW (1955) The measurement of soil pH. Soil Sci Am J 19:164–167

    Article  CAS  Google Scholar 

  • Sharma VK, Kumar N, Prakash T, Taylor TD (2010) MetaBioME: a database to explore commercially useful enzymes in metagenomic datasets. Nucleic Acids Res 38(Database issue):D468–D472. doi:10.1093/nar/gkp1001

  • Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas M, Pal KK, Dey R, Saxena AK, Dave SR (2012) A novel haloarchaeal lineage widely distributed in the hypersaline marshy environment of Little and Great Rann of Kutch in India. Curr Sci 9:1078–1084

    Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  CAS  PubMed  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ventosa A, Mellado E, Sanchez-Porrro C, Marquez MC (2008) Halophilic and halotolerant microorganisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, 2nd edn. Springer, Berlin, pp 87–115

    Chapter  Google Scholar 

  • Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid Assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78:7626–7637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yousuf B, Keshri J, Mishra A, Jha B (2012) Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachishypogaea. Gene 506:18–24

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, García-González R, Schanbacher FL, Morrison M (2008) Evaluations of different hypervariable regions of archaeal 16 s rRNA genes in profiling of methanogens by archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74:889–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology, Government of Gujarat, under Project-151, a joint initiative of The Gujarat Biodiversity Gene Bank, The Gujarat Genomics Initiative, and The Virtual Institute of Bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehal B. Bagatharia.

Ethics declarations

Conflict of interest

The author(s) declare no competing financial interests

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, A.S., Joshi, M.N., Bhargava, P. et al. A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 19, 973–987 (2015). https://doi.org/10.1007/s00792-015-0772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00792-015-0772-z

Keywords