Abstract
Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.
Similar content being viewed by others
Abbreviations
- OD:
-
Optical density
References
Antón J, Llobet-Brossa E, Rodriguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523. doi:10.1046/j.1462-2920.1999.00065.x
Arahal DR, Dewhirst FE, Pasteret BJ, Volcani BI, Ventosa A (1996) Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62:3779–3786
Atanasova NS, Pietilä MK, Oksanen HM (2013) Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. Microbiol Open 2:811–825. doi:10.1002/mbo3.115
Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518. doi:10.1007/s00792-008-0154-x
Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573–582. doi:10.1016/j.resmic.2010.05.009
Bardavid ER, Oren A (2012) Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat: an adaptation to life at high salt concentrations? Extremophiles 16(5):787–792. doi:10.1007/s00792-012-0476-6
Besse A, Vandervennet M, Peduzzi J, Rebuffat S, Carré-Mlouka A (2014) Halocin C8, an antimicrobial peptide produced by halophilic archaea of the genera Natrinema and Haloterrigena. 10th International Congress on Extremophiles, Saint Petersburg. Book of abstracts (Abst. P54) pp 171
Besse A, Peduzzi J, Rebuffat S, Carre-Mlouka A (2015) Antmicrobial peptides and proteins in the face of extremes: lessons from archaeocins. Biochimie 118:344–355. doi:10.1016/j.biochi.2015.06.004
Boujelben I, Gomariz M, Martinez-Garcia M, Santos F, Peῇa A, Lόpez C, Antόn J, Maalej S (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax in Tunisia. A van Leew J Microb 845–857. doi:10.1007/s10482-012-9701-7
Boujelben I, Martinez-Garcia M, Pelt JV, Maalej S (2014) Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns. A van Leew J Microb 4:675–692. doi:10.1007/s10482-014-0238-9
Cheung J, Danna KJ, O’Connor EM, Price LB, Shand RF (1997) Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon Haloferax mediterranei R4. J Bacteriol 179:548–551
Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res W465–W469. doi:10.1093/nar/gkn180
Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. doi:10.1128/MMBR.00016-05
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, genes encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734. doi:10.1039/B516237H
Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
Enache M, Itoh T, Kamekura M, Popescu G, Dumitru L (2008) Halophilic archaea isolated from man-made young (200 years) salt lakes in Slanic, Prahova, Romania. Cent Eur J Biol 3:388–395. doi:10.2478/s11535-008-0034-5
Gerhardt P, Murray RGE, Wood WA, Krieg R (1994) Methods for general and molecular bacteriology. Am Soc Microbiol, Washington
Ghai R, Pašić L, Fernández AB, Martin-Cuadrado A, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodriguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135. doi:10.1038/srep00135
Ghrairi T, Braiek OB, Hani K (2015) Detection and characterization of a bacteriocin, putadicin T01, produced by Pseudomonas putida isolated from hot spring water. APMIS 123:260–268. doi:10.1111/apm.12343
Han J, Zhang F, Hou J, Liu X, Li M, Liu H, Cai L, Zhang B, Chen Y, Zhou J, Hu S, Xiang H (2012) Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer. J Bacteriol 194:4463–4464. doi:10.1128/JB.00880-12
Imadalou-Idrès N, Carré-Mlouka A, Vandervennet M, Yahiaoui H, Peduzzi J, Rebuffat S (2013) Diversity and antimicrobial activity of cultivable halophilic archaea from three Algerian sites. J Life Sci 7:1057–1069
Kavitha P, Lipton AP, Sarika AR, Aishwarya MS (2011) Growth characteristics and halocin production by new isolate, Haloferax volcanii KPS1 from Kovalam solar saltern (India). Res J Biol Scis 6:257–262. doi:10.3923/rjbsci.2011.257.262
Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414
Kis-Papo T, Oren A (2000) Halocins: are they involved in the competition between halobacteria in saltern ponds? Extremophiles 4:35–41
Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. App Environ Microbiol 53:211–213
Li Y, Xiang H, Liu J, Zhou M, Tan H (2003) Purification and biological caracterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles 7:401–407. doi:10.1007/s00792-003-0335-6
Meknaci R, Lopes P, Servy C, LeCaer JP, Andrieu JP, Hacéne H, Ouazzani J (2014) Agar-supported cultivation of Halorubrum sp. SSR and production of halocin C8 on the scale-up prototype Platex. Extremophiles 18:1049–1055. doi:10.1007/s00792-014-0682-5
Meseguer I, Rodriguez-Valera F (1985) Production and purification of halocin H4. FEMS Microbiol Lett 28:177–182
Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510
Naor A, Yair Y, Gophna U (2013) A halocin-H4 mutant Haloferax mediterranei strain retains the ability to inhibit growth of other halophilic archaea. Extremophiles 17:973–979. doi:10.1007/s00792-013-0579-8
O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31. doi:10.1038/sj/jim/7000190
Oren A (2008) Nomenclature and taxonomy of halophilic archaea—comments on the proposal by DasSarma and DasSarma for nomenclatural changes within the order Halobacteriales. In J Syst Evol Microbiol 58:2245–2246. doi:10.1099/ijs.0.2008/005173-0
Oren A (2013) Salinobacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 342:1–9. doi:10.1111/1574-6968.12094
Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Microbiol 33:119–124. doi:10.1016/j.copbio.2015.02.005
Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47: 233–238
Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70. doi:10.1186/gb-2008-9-4-r70
Prangishvili D, Holz I, Stieger E, Nickell E, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182: 2985–2988. doi:10.1128/JB.182.10.2985-2988.2000
Price LB, Shand RF (2000) Halocin S8: a 36-amino-acid microhalocin from the haloarchaeal strain S8a. J Bacteriol 182:4951–4958
Reed CR, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Hindawi Publ Corp Archaea 1–14. doi:10.1155/2013/373275
Rodriguez-Valera F, Juez G, Kushner D (1982) Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Can J Microbiol 28:151–154. doi:10.1139/m82-019
Salgaonkar BB, Mani K, Nair A, Gangadharan S, Braganca JM (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar saltern. Probiotics Antimicrob Proteins 4:98–107. doi:10.1007/s12602-012-9097-8
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold spring Harbor, USA
Shand RF, Leyva KJ (2008) Archaeal antimicrobials; an undiscovered country. In: Blum P (ed) Archaea: new models for prokaryotic biology. Caisterr Academic Press, Norfolk, pp 233–243
Sun C, Li Y, Mei S, Zhou L, Xiang H (2005) A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Mol Microbiol 57:537–549. doi:10.1111/j.1365-2958.2005.04705.x
Torreblanca M, Rodrıguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99. doi:10.1016/S0723-2020(86)80155-2
Torreblanca M, Meseguer I, Ventosa A (1994) Production of halocin is a practically universal feature of archaeal halophilic rods. Lett Appl Microbiol 19:201–205. doi:10.1111/j.1472-765X.1994.tb00943.x
Trigui H, Masmoudi S, Brochier-Armanet C, Maalej S, Dukan S (2011a) Survival of extremely and moderately halophilic isolates of Tunisian solar saltern after UV-B or oxidatives stress. Can J Microbiol 57:923–933. doi:10.1139/w11-087
Trigui H, Masmoudi S, Brochier-Armanet C, Barani A, Gregori G, Denis M, Dukan S, Maalej S (2011b) Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles 15:347–358. doi:10.1007/s00792-011-0364-5
Vetriani C, Holger W, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microb 65(10):4375–4384
Zassloff M (2002) Antimicrobial peptides from multicellular organisms. Nature 415:389–395. doi:10.1038/415389a
Acknowledgments
This study was supported by the Tunisian Ministry of Scientific Research and the French Ministry of Foreign Affairs through a joint project PHC-Utique No 13G0833, the University of Sfax (Tunisia) and the National Museum of Natural History in Paris (France). We are grateful to the Cotusal salt company in Sfax for permission to access and sample the solar saltern.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Oren.
Electronic supplementary material
Below is the link to the electronic supplementary material.
792_2016_827_MOESM1_ESM.pptx
Supplementary Figure S1: Amplification of halocin genes with halS8-specific primers halS8-F1 and halS8-R1 in Hbt. salinarum ETD5 and Hbt. salinarum ETD8 (a) and with halH4-specific primers halH4-F1 and halH4-R1in Htg. thermotolerans SS1R12 (b). a M Marker ExactLadder® DNA PreMix 2 Log (Ozyme, France), 1 Hbt. salinarum ETD5, 2 Hbt. salinarum ETD8. b M Marker ExactLadder® DNA PreMix 2 Log (Ozyme, France), 1-2 Htg. thermotolerans SS1R12, 3 Hfx. mediterranei DSM1411. (PPTX 105 kb)
792_2016_827_MOESM2_ESM.docx
Supplementary Figure S2: Alignments of the predicted amino acid sequences deduced from the nucleotide sequences of the halS8 gene from the uncharacterized halophilic archaea S8a (Genbank accession no AF276080, Price and Shand 2000), Halobacterium sp. GN 101 (Genbank accession no EU080936, Besse et al 2015), Hbt. salinarum ETD5 (Genbank accession no KT783468, this study) and Hbt. salinarum ETD8 (Genbank accession no KR611166, this study). The amino acid substitutions are indicated in shaded light gray. The sequence of the mature HalS8 peptide is underlined (Price and Shand, 2000 (DOCX 14 kb)
Rights and permissions
About this article
Cite this article
Ghanmi, F., Carré-Mlouka, A., Vandervennet, M. et al. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia. Extremophiles 20, 363–374 (2016). https://doi.org/10.1007/s00792-016-0827-9
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00792-016-0827-9