Zusammenfassung
Der vorliegende Beitrag fasst Ergebnisse der experimentellen und der klinischen Onkologie zusammen, die auf eine zentrale Bedeutung des Kohlenhydratstoffwechsels maligner Tumoren für Malignitätsgrad und Therapieansprechen hinweisen. In Primärtumoren, wie etwa in Zervixkarzinomen, Plattenephithelkarzinomen der Kopf-Hals-Region oder Adenokarzinomen des Rektums, ist bereits bei Erstdiagnose eine überdurchschnittliche Laktatakkumulation als Spiegel einer hohen Glykolyseaktivität mit erhöhter Metastasenbildung oder höherer Strahlenresistenz verknüpft. Der Zusammenhang zwischen therapeutischer Resistenz und Glykolyse beruht zumindest teilweise auf den Radikalfängereigenschaften glykolytischer Produkte, hauptsächlich Pyruvat und Laktat, sowie deren Verknüpfung mit dem Redoxstatus der Zelle. Vor diesem Hintergrund wurde das neue Verfahren der quantitativen Biolumineszenz zur bildgebenden Darstellung des Laktat/Pyruvat-Verhältnisses in Tumorbiopsien entwickelt. Künftige Forschungsinitiativen in der Onkologie sollten vermehrt auf den Redoxstatus solider Tumoren fokussieren.
Abstract
This article summarizes data from experimental and clinical oncology which are indicative of a pivotal role of tumor carbohydrate metabolism in malignant behavior and outcome of treatment. In primary tumors, such as cervix carcinomas, head and neck squamous cell carcinomas or rectum adenocarcinomas, elevated lactate levels as a mirror of a high glycolytic activity, are correlated even at the initial diagnosis with a high level of malignancy as indicated by increased formation of metastases or an elevated radiotherapy resistance. The relationship between therapeutic resistance and glycolysis may at least partially be due to the radical scavenging potential of glycolytic intermediates, mainly pyruvate and lactate and to the link between these metabolites and the cellular redox status. On the basis of these data and other considerations, a novel technique has been developed for imaging the lactate/pyruvate ratio in tumor biopsies using quantitative bioluminescence. More research effort should, therefore, be focussed on the redox status of tumors in oncological studies in the future.
Similar content being viewed by others
Literatur
Brand K (1997) Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomemb 29(4): 355–364
Brizel DM, Schroeder T, Scher RL et al. (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2): 349–353
Dooley CT, Dore TM, Hanson GT et al. (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279(21): 22284–22293
Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11): 891–899
Gottfried E, Kunz-Schughart LA, Ebner S et al. (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5): 2013–2021
Groussard C, Morel I, Chevanne M et al. (2000) Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J Appl Physiol 89(1): 169–175
Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4): 266–276
Hoffmann A, Gloe T, Pohl U (2001) Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism. J Cell Physiol 188(1): 33–44
Keul J, Doll E, Keppler D (1972) Medicine and sport science, Bd 7. Energy metabolism of human muscle. Karger, Basel
Larsen E, Reite K, Nesse G et al. (2006) Repair and mutagenesis at oxidized DNA lesions in the developing brain of wild-type and Ogg1-/-mice. Oncogene 25(17): 2425–2432
Lin X, Zhang F, Bradbury CM et al. (2003) 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 63(12): 3413–3417
Mitka M (2005) Diabetic retinopathy mechanism probed. JAMA 293(2): 148–149
Mueller-Klieser W, Walenta S (1993) Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single photon imaging. Histochem J 25(6): 407–420
O’Donnell-Tormey J, Nathan CF, Lanks K et al. (1987) Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med 165(2): 500–514
Quennet V, Yaromina A, Zips D et al. (2006) Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 81(2): 130–135
Salahudeen AK, Clark EC, Nath KA (1991) Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. J Clin Invest 88(6): 1886–1893
Sattler UG, Walenta S, Mueller-Klieser W (2007) A bioluminescence technique for quantitative and structure-associated imaging of pyruvate. Lab Invest 87(1): 84–92
Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4) Suppl: S62–67
Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16): 2195–2204
Walenta S, Wetterling M, Lehrke M et al. (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4): 916–921
Walenta S, Chau T-V, Schroeder T et al. (2003) Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists? J Cancer Res Clin Oncol 129(6): 321–326
Yaromina A, Zips D, Thames HD et al. (2006) Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: the need for a multivariate approach in biomarker studies. Radiother Oncol 81(2): 122–129
Danksagung
Wir danken der Deutschen Forschungsgemeinschaft (Mu 576/14–1, 14–2 und 14–3) und der Stiftung Rheinland-Pfalz für Innovation (15202–386261/606) für die Unterstützung.
Interessenkonflikt
Keine Angaben.
Author information
Authors and Affiliations
Corresponding author
Additional information
Gewidmet Herrn Prof. Dr. med. Rolf Zander für die jahrzehntelange Zusammenarbeit im Physiologischen Institut.
Rights and permissions
About this article
Cite this article
Sattler, U., Walenta, S. & Mueller-Klieser, W. Laktat und Redoxstatus in malignen Tumoren. Anaesthesist 56, 466–469 (2007). https://doi.org/10.1007/s00101-007-1164-2
Issue date:
DOI: https://doi.org/10.1007/s00101-007-1164-2