Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Selecting hidden Markov model state number with cross-validated likelihood

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The problem of estimating the number of hidden states in a hidden Markov model is considered. Emphasis is placed on cross-validated likelihood criteria. Using cross-validation to assess the number of hidden states allows to circumvent the well-documented technical difficulties of the order identification problem in mixture models. Moreover, in a predictive perspective, it does not require that the sampling distribution belongs to one of the models in competition. However, computing cross-validated likelihood for hidden Markov models for which only one training sample is available, involves difficulties since the data are not independent. Two approaches are proposed to compute cross-validated likelihood for a hidden Markov model. The first one consists of using a deterministic half-sampling procedure, and the second one consists of an adaptation of the EM algorithm for hidden Markov models, to take into account randomly missing values induced by cross-validation. Numerical experiments on both simulated and real data sets compare different versions of cross-validated likelihood criterion and penalised likelihood criteria, including BIC and a penalised marginal likelihood criterion. Those numerical experiments highlight a promising behaviour of the deterministic half-sampling criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1973). Information theory as an extension of the maximum likelihood theory. In: Petrov, BN and Csaki, F (eds) Second International Symposium on Information Theory, pp 267–281. Akademiai Kiado, Budapest

    Google Scholar 

  • Baum LE, Petrie T, Soules G and Weiss N (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41(1): 164–171

    Article  MATH  MathSciNet  Google Scholar 

  • Bernardo JM and Smith AFM (1994). Bayesian theory. Wiley, Chichester

    MATH  Google Scholar 

  • Biernacki C, Celeux G and Govaert G (2001). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern Anal Mach Intel 22(7): 719–725

    Article  Google Scholar 

  • Biernacki C, Celeux G and Govaert G (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal 41(3–4): 561–575

    Article  MathSciNet  Google Scholar 

  • Boucheron S, Gassiat E (2005) Inference in hidden Markov models, chapter order estimation. In: Cappé O, Moulines E, Rydén T (eds) Springer, Heidelberg

  • Celeux G, Clairambault J (1992) Estimation de chaînes de Markov cachées : méthodes et problèmes. In: Actes des journées thématiques Approches markoviennes en signal et images. GDR signal-images CNRS, pp 5–20

  • Churchill GA (1989). Stochastic models for heterogeneous DNA sequences. Bull Math Biol 51: 79–94

    MATH  MathSciNet  Google Scholar 

  • Clairambault J, Curzi-Dascalova L, Kauffmann F, Médigue C and Leffler C (1992). Heart rate variability in normal sleeping full-term and preterm neonates. Early Human Dev 28: 169–183

    Article  Google Scholar 

  • Dempster AP, Laird NM and Rubin DB (1977). Maximum likelihood from incomplete data via the EM Algorithm. J R Stat Soc Ser B 39: 1–38

    MATH  MathSciNet  Google Scholar 

  • Devijver PA (1985). Baum’s forward–backward Algorithm revisited. Pattern Recogn Lett 3: 369–373

    Article  MATH  Google Scholar 

  • Durand J-B (2003) Modèles à structure cachée : inférence, s諥ction de modèles et applications (in French). Ph.D. thesis, Université Grenoble 1 - Joseph Fourier

  • Ephraim Y and Merhav N (2002). Hidden Markov processes. IEEE Trans Inform Theory 48: 1518–1569

    Article  MATH  MathSciNet  Google Scholar 

  • Fraley C and Raftery AE (2002). Model-based clustering, discriminant Analysis and density estimation. J Am Stat Assoc 97: 611–631

    Article  MATH  MathSciNet  Google Scholar 

  • Gassiat E (2002). Likelihood ratio inequalities with application to various mixtures. Ann Inst Henri Poincaré 38: 897–906

    Article  MATH  MathSciNet  Google Scholar 

  • Gassiat E and Kéribin C (2000). The likelihood ratio test for the number of components in a mixture with Markov regime. ESAIM P S 4: 25–52

    Article  MATH  Google Scholar 

  • Kass RE and Raftery AE (1995). Bayes factors. J Am Stat Assoc 90(430): 773–795

    Article  MATH  Google Scholar 

  • Kéribin C (2000). Consistent estimation of the order of mixture models. Sankhya Ser A 62: 49–66

    MATH  MathSciNet  Google Scholar 

  • McLachlan GJ and Peel D (1997). On a resampling approach to choosing the number of components in normal mixture models. In: Billard, L and Fisher, NI (eds) Computing science and statistics, vol 28, pp 260–266. Interface Foundation of North America, Fairfax Station

    Google Scholar 

  • McLachlan GJ and Peel D (2000). Finite mixture models. Wiley Series in probability and statistics. Wiley, London

    Google Scholar 

  • Rabiner LR (1989). A tutorial on hidden Markov models and selected Applications in speech recognition. Proc IEEE 77: 257–286 (February)

    Article  Google Scholar 

  • Redner RA and Walker HF (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2): 195–239

    Article  MATH  MathSciNet  Google Scholar 

  • Ripley BD (1996). Pattern recognition and neural networks. Cambridge University Press, London

    MATH  Google Scholar 

  • Robert CP, Celeux G and Diebolt J (1993). Bayesian estimation of hidden Markov chains: A stochastic implementation. Stat Probab Lett 16(1): 77–83

    Article  MATH  MathSciNet  Google Scholar 

  • Robertson AW, Kirshner S and Smyth P (2004). Downscaling of daily rainfall occurence over Northeast Brazil using a hidden Markov model. J Clim 17(7): 4407–4424

    Article  Google Scholar 

  • Roeder K and Wasserman L (1997). Practical Bayesian density estimation using mixtures of normals. J Am Stat Assoc 92(439): 894–902

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz G (1978). Estimating the dimension of a model. Ann Stat 6: 461–464

    Article  MATH  Google Scholar 

  • Smyth P (2000). Model selection for probabilistic clustering using cross-validated likelihood. Stat Comput 10(1): 63–72

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG and Carlin BP (2000). Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64(4): 583–639

    Article  Google Scholar 

  • Yang Y (2005). Can the strengths of AIC and BIC be shared? A confict between model identification and regression estimation. Biometrika 92: 937–950

    Article  MathSciNet  Google Scholar 

  • Zhang P (1993). Model selection via multifold cross validation. Ann Stat 21(1): 299–313

    Article  Google Scholar 

  • Zhang NR and Siegmund DO (2007). A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1): 22–32

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Durand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celeux, G., Durand, JB. Selecting hidden Markov model state number with cross-validated likelihood. Comput Stat 23, 541–564 (2008). https://doi.org/10.1007/s00180-007-0097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00180-007-0097-1

Keywords

Profiles

  1. Jean-Baptiste Durand