Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Cortical glutamate–dopamine interaction and ketamine-induced psychotic symptoms in man

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The noncompetitive glutamate N-methyl-d-aspartate receptor antagonist ketamine induces transient psychotic symptoms in man. Involvement of dopaminergic mechanisms in these effects has been suggested.

Objectives

The purpose of this article is to study the effects of ketamine on extrastriatal dopamine receptor availability in healthy subjects and extracellular dopamine levels in rat cortex.

Materials and methods

The effect of computer-driven subanesthetic ketamine infusion on cortical dopamine release was studied in healthy male subjects using a controlled study design. Dopamine D2/D3 receptor availability was quantified using positron emission tomography (PET) and [11C]FLB 457. A conventional region of interest-based analysis and voxel-based analysis was applied to the PET data. The ketamine-induced cortical dopamine release in rats was studied using in vivo microdialysis.

Results

Ketamine infusion reduced significantly the [11C]FLB 457 binding potential (BP) in the posterior cingulate/retrosplenial cortices, suggestive of increased dopamine release. This brain imaging finding was further supported by a microdialysis experiment in rats showing that ketamine increased the extracellular dopamine concentration by up to 200% in the retrosplenial cortex. Ketamine-induced psychotic symptoms were associated with changes in the [11C]FLB 457 BP in the dorsolateral prefrontal and anterior cingulate cortices.

Conclusions

Our results suggest that cortical dopaminergic mechanisms have a role in the emergence of ketamine-induced psychosis-like symptoms in man. The glutamate–dopamine interaction in the posterior cingulate during ketamine infusion is well in line with the recent functional and structural imaging studies suggesting involvement of this cortical area in the development of schizophrenic psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalto S, Hirvonen J, Kajander J, Scheinin H, Någren K, Vilkman H, Gustafsson L, Syvälahti E, Hietala J (2002) Ketamine does not decrease striatal dopamine D2 receptor binding in man. Psychopharmacology (Berl) 164:401–406

    Article  CAS  Google Scholar 

  • Aalto S, Bruck A, Laine M, Nagren K, Rinne JO (2005) Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. J Neurosci 25:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554

    PubMed  CAS  Google Scholar 

  • Adams BW, Bradberry CW, Moghaddam B (2002) NMDA Antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys. Synapse 43:12–18

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet 349:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Malhotra A, Pinals D, Weisenfeld N, Pickar D (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatr 154:805–811

    PubMed  CAS  Google Scholar 

  • Breier A, Adler CM, Weisenfeld N, Su TP, Elman I, Picken L, Malhotra AK, Pickar D (1998) Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 29:142–147

    Article  PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson's disease. Trends Neurosci 13:272–276

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia—therapeutic implications. Biol Psychiatry 46:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    PubMed  CAS  Google Scholar 

  • Chou YH, Halldin C, Farde L (2000) Effect of amphetamine on extrastriatal D2 dopamine receptor binding in the primate brain: a PET Study. Synapse 38:138–143

    Article  PubMed  CAS  Google Scholar 

  • Cooper BG, Manka TF, Mizumori SJ (2001) Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. Behav Neurosci 115:1012–1028

    Article  PubMed  CAS  Google Scholar 

  • Dagher A, Gunn R, Lockwood G, Cunningham VJ, Grasby PM, Brooks DJ (1998) Measuring neurotransmitter release with PET: methodological issues. In: Carlson R, Daube-Withespoon ME, Herscovitch P (eds) Quantitative functional brain imaging with positron emission tomography. Academic, San Diego, pp 449–454

    Google Scholar 

  • Descarries L, Lemay B, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21:807–824

    Article  PubMed  CAS  Google Scholar 

  • Deutch, AY, Roth RH (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog Brain Res 85:367–402

    Article  PubMed  CAS  Google Scholar 

  • Domino EF, Domino SE, Smith RE, Domino LE, Goulet JR, Domino KE, Zsigmond EK (1984) Ketamine kinetics in unmedicated and diazepam-premedicated subjects. Clin Pharmacol Ther 36:563–645

    Article  Google Scholar 

  • Farber NB, Price MT, Labruyere J, Nemnich J, St Peter H, Wozniak DF, Olney JW (1993) Antipsychotic drugs block phencyclidine receptor-mediated neurotoxicity. Biol Psychiatry 34:119–121

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, Halldin C (1997) A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology (Berl) 133:396–404

    Article  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak RS (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Fujita M, Verhoeff NP, Varrone A, Zoghbi SS, Baldwin RM, Jatlow PA, Anderson GM, Seibyl JP, Innis RB (2000) Imaging extrastriatal dopamine D(2) receptor occupancy by endogenous dopamine in healthy humans. Eur J Pharmacol 387:179–188

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271

    Article  PubMed  CAS  Google Scholar 

  • Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  • Hagelberg N, Aalto S, Kajander J, Oikonen V, Hinkka S, Någren K, Hietala J, Scheinin H (2004) Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 109:86–93

    Article  PubMed  CAS  Google Scholar 

  • Hall H, Farde L, Halldin C, Hurd Y-L, Pauli S, Sedvall G (1996) Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using [125I]epidepride. Synapse 23:15–23

    Article  Google Scholar 

  • Haznedar MM, Buchsbaum MS, Luu C, Hazlett EA, Siegel BV, Lohr J, Wu J, Haier RJ, Bunney WE Jr (1997) Decreased anterior cingulate gyrus metabolic rate in schizophrenia. Am J Psychiatr 154:682–684

    PubMed  CAS  Google Scholar 

  • Ihalainen JA, Tanila H (2002) In vivo regulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse prefrontal cortex. Eur J Neurosci 15:1789–1794

    Article  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatr 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Kapur S, Seeman P (2001) Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D2 receptor. Biol Psychiatry 49:954–955

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Martinez D, Kochan LD, Hwang D-R, Huang Y, Mawlawi O, Suckow RF, Van Heertum RL, Laruelle M (2002) NMDA antagonist effects on striatal dopamine release: positron emission tomography studies in humans. Synapse 43:19–29

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Krystal JH, D'Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, Cassello K, Bowers MB Jr, Vegso S, Heninger GR, Charney DS (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology (Berl) 145:193–204

    Article  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Katemine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6:869–872

    Article  PubMed  CAS  Google Scholar 

  • Lammerstma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A (2001) Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 432:119–136

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Clark S, Lewis DV, Wilson WA (2002) NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J Neurosci 22:3070–3080

    PubMed  CAS  Google Scholar 

  • Lindefors N, Barati S, O'Connor WT (1997) Differential effects of single and repeated ketamine administration on dopamine, serotinin and GABA transmission in rat medial prefrontal cortex. Brain Res 759:205–212

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug: serenyl. Arch Neurol Psychiatry 71:363–369

    Google Scholar 

  • Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787

    Article  PubMed  CAS  Google Scholar 

  • Moore H, West AR, Grace AA (1999) The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 46:40–55

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Sato K (1999) Ketamine stereoselectively inhibits rat dopamine transporter. Neurosci Lett 274:131–134

    Article  PubMed  CAS  Google Scholar 

  • Okauchi T, Suhara T, Maeda J, Kawabe K, Obayashi S, Suzuki K (2001) Effect of endogenous dopamine on endogenous dopamine on extrastriated[(11)C]FLB 457 binding measured by PET. Synapse 41:87–95

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    PubMed  CAS  Google Scholar 

  • Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Olsson H, Halldin C, Swahn CG, Farde L (1999) Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain. J Cereb Blood Flow Metab 19:1164–1173

    Article  PubMed  CAS  Google Scholar 

  • Olsson H, Halldin C, Farde L (2004) Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET. Neuroimage 22:794–803

    Article  PubMed  Google Scholar 

  • Overall JE, Gorham DR (1962) The Brief Psychiatric Rating Scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci 1003:36–52

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Jasper P, Hall J, Noble L, Sagar SM (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann Neurol 30:801–809

    Article  PubMed  CAS  Google Scholar 

  • Shoblock JR, Sullivan EB, Maisonneuve IM, Glick SD (2003) Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacology 165:359–369

    PubMed  CAS  Google Scholar 

  • Shoblock JR, Maisonneuve IM, Glick SD (2004) Differential interactions of desipramine with amphetamine and methamphetamine: evidence that amphetamine releases dopamine from noradrenergic neurons in the medial prefrontal cortex. Neurochem Res 29:1437–1442

    Article  PubMed  CAS  Google Scholar 

  • Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608

    Article  PubMed  CAS  Google Scholar 

  • Slifstein M, Narendran R, Hwang DR, Sudo Y, Talbot PS, Huang Y, Laruelle M (2004) Effect of amphetamine on [(18)F]fallypride in vivo binding to D(2) receptors in striatal and extrastriatal regions of the primate brain: single bolus and bolus plus constant infusion studies. Synapse 54:46–63

    Article  PubMed  CAS  Google Scholar 

  • Smith GS, Schloesser R, Brodie JD, Dewey SL, Logan J, Vitkun SA, Simkowitz P, Hurley A, Cooper T, Volkow ND, Cancro R (1998) Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects. Neuropsychopharmacology 18:18–25

    Article  PubMed  CAS  Google Scholar 

  • Sudo Y, Suhara T, Inoue M, Ito H, Suzuki K, Saijo T, Halldin C, Farde L (2001) Reproducibility of [11C]FLB 457 binding in extrastriatal regions. Nucl Med Commun 22:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K, Tanada S, Suzuki K, Halldin C, Farde L (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30

    Article  PubMed  CAS  Google Scholar 

  • Svensson JO, Gustafsson LL (1996) Determination of ketamine and norketamine enantiomers in plasma by solid phase extraction and high performance liquid chromatography. J Chromatogr 678:373–376

    Article  CAS  Google Scholar 

  • Takahata R, Moghaddam B (2003) Target-specific glutamatergic regulation of dopamine neurons in the ventral tegmental area. J Neurochem 75:1775–1778

    Article  Google Scholar 

  • Vann SD, Aggleton JP (2002) Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci 116:85–94

    Article  PubMed  Google Scholar 

  • Verma A, Moghaddam B (1996) The role of excitatory amino acids in prefrontal cortex function as assessed by spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    PubMed  CAS  Google Scholar 

  • Vilkman H, Kajander J, Någren K, Oikonen V, Syvälahti E, Hietala J (2000) Measurement of extrastriatal D2-like receptor binding with [11C]FLB 457—a test–retest analysis. Eur J Nucl Med 27:1666–1673

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Vontobel P, Oye I, Hell D, Leenders KL (2000) Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res 34:35–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Academy of Finland (LIFE2000) and the Technology Development Centre of Finland (TEKES), Swedish Medical Research Council (3902), and funds from Karolinska Institute, Sweden. We thank the staffs in Turku PET Centre and in the MRI Unit (TUCH) for assistance. The computer program STANPUMP was developed by Prof. Steven L. Shafer, MD. It is available at no charge from him at Anesthesiology Service (112A), VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94394, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo Hietala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aalto, S., Ihalainen, J., Hirvonen, J. et al. Cortical glutamate–dopamine interaction and ketamine-induced psychotic symptoms in man. Psychopharmacology 182, 375–383 (2005). https://doi.org/10.1007/s00213-005-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00213-005-0092-6

Keywords