Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305

    Article  PubMed  CAS  Google Scholar 

  2. Chattopadhyay S, Mehrotra S, Chhabra A, Hegde U, Mukherji B, Chakraborty NG (2006) Effect of CD4+CD25+ and CD4+CD25- T regulatory cells on the generation of cytolytic T cell response to a self but human tumor-associated epitope in vitro. J Immunol 176:984

    PubMed  CAS  Google Scholar 

  3. Wang RF, Peng G, Wang HY (2006) Regulatory T cells and Toll-like receptors in tumor immunity. Semin Immunol 18:136

    Article  PubMed  CAS  Google Scholar 

  4. Lauritzsen GF, Hofgaard PO, Schenck K, Bogen B (1998) Clonal deletion of thymocytes as a tumor escape mechanism. Int J Cancer 78:216

    Article  PubMed  CAS  Google Scholar 

  5. De Visser KE, Schumacher TN, Kruisbeek AM (2003) CD8+ T cell tolerance and cancer immunotherapy. J Immunother 26:1

    Article  PubMed  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia M, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942

    Article  PubMed  CAS  Google Scholar 

  7. Nomura T, Sakaguchi S (2005) Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 293:287

    Article  PubMed  CAS  Google Scholar 

  8. Schirrmacher V, Feuerer M, Beckhove P, Ahlert T, Umansky V (2002) T cell memory, anergy and immunotherapy in breast cancer. J Mammary Gland Biol Neoplasia 7:201

    Article  PubMed  Google Scholar 

  9. Riezebos-Brilman A, Regts J, Freyschmidt EJ, Dontje B, Wilschut J, Daemen T (2005) Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice. Gene Ther 12:1410

    Article  PubMed  CAS  Google Scholar 

  10. Esposito V, Palescandolo E, Spugnini EP, Montesarchio V, De Luca A, Cardillo I, Cortese G, Baldi A, Chirianni A (2006) Evaluation of antitumoral properties of the protease inhibitor indinavir in a murine model of hepatocarcinoma. Clin Cancer Res 12:2634

    Article  PubMed  CAS  Google Scholar 

  11. Knutson K, Schiffman LK, Rinn K, Disis ML (1999) Immunotherapeutic approaches for the treatment of breast cancer. J Mammary Gland Biol Neoplasia 4:353

    Article  PubMed  CAS  Google Scholar 

  12. Disis ML, Cheever MA (1997) HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv Cancer Res 71:343

    Article  PubMed  CAS  Google Scholar 

  13. Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S, Junghans RP (2001) Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res 61:7889

    PubMed  CAS  Google Scholar 

  14. Peoples GE, Smith RC, Linehan DC, Yoshino I, Goedegebuure PS, Eberlein TJ (1995) Shared T cell epitopes in epithelial tumors. Cell Immunol 164:279

    Article  PubMed  CAS  Google Scholar 

  15. Tuttle TM, Anderson BW, Thompson WE, Lee JE, Sahin A, Smith TL, Grabstein KH, Wharton JT, Ioannides CG, Murray JL (1998) Proliferative and cytokine responses to class II HER-2/neu-associated peptides in breast cancer patients. Clin Cancer Res 4:2015

    PubMed  CAS  Google Scholar 

  16. Lenahan C, Dennis C, Isakovich NV, Pories SE (2005) Breast cancer: what’s HER-2/neu got to do with it? Curr Surg 62:459

    Article  PubMed  Google Scholar 

  17. Muller WJ (1991) Expression of activated oncogenes in the murine mammary gland: transgenic models for human breast cancer. Cancer Metastasis Rev 10:217

    Article  PubMed  CAS  Google Scholar 

  18. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89:10578

    Article  PubMed  CAS  Google Scholar 

  19. Nanni P, Nicoletti G, De Giovanni C, Landuzzi L, Di Carlo E, Cavallo F, Pupa SM, Rossi I, Colombo MP, Ricci C, Astolfi A, Musiani P, Forni G, Lollini PL (2001) Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J Exp Med 194:1195

    Article  PubMed  CAS  Google Scholar 

  20. Cefai D, Morrison BW, Sckell A, Favre L, Balli M, Leunig M, Gimmi CD (1999) Targeting HER-2/neu for active-specific immunotherapy in a mouse model of spontaneous breast cancer. Int J Cancer 83:393

    Article  PubMed  CAS  Google Scholar 

  21. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K, Nakamura H, Kanematsu T, Shiku H (1997) Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 159:1336

    PubMed  CAS  Google Scholar 

  22. Singh R, Dominiecki ME, Jaffee EM, Paterson Y (2005) Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J Immunol 175:3663

    PubMed  CAS  Google Scholar 

  23. Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI, Muller WJ, Dixon KH, Jaffee EM (2000) HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 60:3569

    PubMed  CAS  Google Scholar 

  24. Gallo P, Dharmapuri S, Nuzzo M, Maldini D, Iezzi M, Cavallo F, Musiani P, Forni G, Monaci P (2005) Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 113:67

    Article  PubMed  CAS  Google Scholar 

  25. Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y (1995) A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat Med 1:471

    Article  PubMed  CAS  Google Scholar 

  26. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471

    PubMed  CAS  Google Scholar 

  27. Ercolini AM, Machiels JP, Chen YC, Slansky JE, Giedlen M, Reilly RT, Jaffee EM (2003) Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J Immunol 170:4273

    PubMed  CAS  Google Scholar 

  28. Wolpoe ME, Lutz ER, Ercolini AM, Murata S, Ivie SE, Garrett ES, Emens LA, Jaffee EM, Reilly RT (2003) HER-2/neu-specific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumor-free survival in Her-2/neu-transgenic mice. J Immunol 171:2161

    PubMed  CAS  Google Scholar 

  29. Drebin JA, Link VC, Greene MI (1988) Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 2:273

    PubMed  CAS  Google Scholar 

  30. Morgan DJ, Kreuwel HT, Fleck S, Levitsky HI, Pardoll DM, Sherman LA (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160:643

    PubMed  CAS  Google Scholar 

  31. Singh R, Paterson Y (2006) Vaccination strategy determines the emergence and dominance of CD8+ T-cell epitopes in a FVB/N rat HER-2/neu mouse model of breast cancer. Cancer Res 66:7748

    Article  PubMed  CAS  Google Scholar 

  32. Rubocki RJ, Lee DR, Lie WR, Myers NB, Hansen TH (1990) Molecular evidence that the H-2D and H-2L genes arose by duplication. Differences between the evolution of the class I genes in mice and humans. J Exp Med 171:2043

    Article  PubMed  CAS  Google Scholar 

  33. Lee DR, Rubocki RJ, Lie WR, Hansen TH (1988) The murine MHC class I genes, H-2Dq and H-2Lq, are strikingly homologous to each other, H-2Ld, and two genes reported to encode tumor-specific antigens. J Exp Med 168:1719

    Article  PubMed  CAS  Google Scholar 

  34. Kattman SJ, Lukin KR, Oh JZ, Berg RE, Staerz UD (2005) Maturational stage-dependent thymocyte responses to TCR engagement. Eur J Immunol 35:2051

    Article  PubMed  CAS  Google Scholar 

  35. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM (2005) Recruitment of latent pools of high-avidity CD8 (+) T cells to the antitumor immune response. J Exp Med 201:1591

    Article  PubMed  CAS  Google Scholar 

  36. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB, et al (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54:16

    PubMed  CAS  Google Scholar 

  37. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15:3363

    PubMed  CAS  Google Scholar 

  38. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61:4744

    PubMed  CAS  Google Scholar 

  39. Hurley J, Doliny P, Reis I, Silva O, Gomez-Fernandez C, Velez P, Pauletti G, Pegram MD, Slamon DJ (2006) Docetaxel, Cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol 24:1831

    Article  PubMed  CAS  Google Scholar 

  40. Drebin JA, Link VC, Greene MI (1988) Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene 2:387

    PubMed  CAS  Google Scholar 

  41. Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P, Wei WZ, Cavallo F (2006) Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res 66:7734

    Article  PubMed  CAS  Google Scholar 

  42. Hussain SF, Paterson Y (2004) CD4+CD25+ regulatory T cells that secrete TGFbeta and IL-10 are preferentially induced by a vaccine vector. J Immunother 27:339

    Article  PubMed  CAS  Google Scholar 

  43. Lustgarten J, Dominguez AL, Cuadros C (2004) The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur J Immunol 34:752

    Article  PubMed  CAS  Google Scholar 

  44. Li W, Berencsi K, Basak S, Somasundaram R, Ricciardi RP, Gonczol E, Zaloudik J, Linnenbach A, Maruyama H, Miniou P, Herlyn D (1997) Human colorectal cancer (CRC) antigen CO17-1A/GA733 encoded by adenovirus inhibits growth of established CRC cells in mice. J Immunol 159:763

    PubMed  CAS  Google Scholar 

  45. Lo Iacono M, Cavallo F, Quaglino E, Rolla S, Iezzi M, Pupa SM, De Giovanni C, Lollini PL, Musiani P, Forni G, Calogero RA (2005) A limited autoimmunity to p185neu elicited by DNA and allogeneic cell vaccine hampers the progression of preneoplastic lesions in HER-2/NEU transgenic mice. Int J Immunopathol Pharmacol 18:351

    PubMed  CAS  Google Scholar 

  46. Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, Warnick E, Whiteside T, Osborne J, Kim H, Day R, Troetschel M, Finn OJ (2005) Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 54:254

    Article  PubMed  CAS  Google Scholar 

  47. Zbar AP, Thomas H, Wilkinson RW, Wadhwa M, Syrigos KN, Ross EL, Dilger P, Allen-Mersh TG, Kmiot WA, Epenetos AA, Snary D, Bodmer WF (2005) Immune responses in advanced colorectal cancer following repeated intradermal vaccination with the anti-CEA murine monoclonal antibody, PR1A3: results of a phase I study. Int J Colorectal Dis 20:403

    Article  PubMed  CAS  Google Scholar 

  48. Lustgarten J, Dominguez AL, Pinilla C (2006) Identification of cross-reactive peptides using combinatorial libraries circumvents tolerance against Her-2/neu-immunodominant epitope. J Immunol 176:1796

    PubMed  CAS  Google Scholar 

  49. Duraiswamy J, Bharadwaj M, Tellam J, Connolly G, Cooper L, Moss D, Thomson S, Yotnda P, Khanna R (2004) Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res 64:1483

    Article  PubMed  CAS  Google Scholar 

  50. Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM (2000) Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC–peptide–TCR complex. Immunity 13:529

    Article  PubMed  CAS  Google Scholar 

  51. Tumenjargal S, Gellrich S, Linnemann T, Muche JM, Lukowsky A, Audring H, Wiesmuller KH, Sterry W, Walden P (2003) Anti-tumor immune responses and tumor regression induced with mimotopes of a tumor-associated T cell epitope. Eur J Immunol 33:3175

    Article  PubMed  CAS  Google Scholar 

  52. Luo W, Ko E, Hsu JC, Wang X, Ferrone S (2006) Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects. J Immunol 176:6046

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mark Greene (University of Pennsylvania, Philadelphia, PA) for the generous donation of the 7.21.2 hybridoma cell line and Dr. Gail Massey (University of Pennsylvania, Philadelphia, PA) for her assistance in culturing this cell line. We would also like to thank. Dr. Paulo Maciag (University of Pennsylvania, Philadelphia, PA) for allowing us to use Lm-LLO-NY-ESO-1 prior to publication and Dr. Zhen-Kun Pan (University of Pennsylvania, Philadelphia, PA) for her assistance with the mouse work. Yvonne Paterson wishes to disclose that she has a financial interest in Advaxis, Inc., a vaccine and therapeutic company that has licensed or has an option to license all patents from the University of Pennsylvania that concern the use of Listeria or listerial products as vaccines.

This work was supported by Department of Defense Grant W81XWH-04-1-0338 (R.S.) and NIH R01CA109253 (Y.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Paterson, Y. In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines. Cancer Immunol Immunother 56, 927–938 (2007). https://doi.org/10.1007/s00262-006-0237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00262-006-0237-4

Keywords